首页> 外文会议>2013 IEEE International Conference on Industrial Technology >Optimal H#x221E; controller on the stability of MAVs in a novel Software-in-the-Loop control platform
【24h】

Optimal H#x221E; controller on the stability of MAVs in a novel Software-in-the-Loop control platform

机译:新型软件在环控制平台中MAV稳定性的最优H∞控制器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel Software-in-the-Loop (SiL) evaluation of an optimal H robust controller on the stability problem of MAVs (Micro Aerial Vehicles) in the quadrotor configuration, whose originality is to employ ©Ascending Technologies Pelican MAV. The synthesis of the robust controller is grounded by the γ-iteration algorithm, which results in a MIMO optimal controller bounded by an attenuation level. The core of SiL platform, a customized C++/C# software named FVMS (Flight Variables Management System), developed by ART (Aerial Robots Team) at USP/EESC, is able to deal with full duplex communication to ©Microsoft Flight Simulator (MSFS). In turn, MSFS acts as the virtual environment through which a complete dynamic and graphic model of the Pelican MAV can be configured and emulated. Since FVMS can fully reach every variable related to the simulated MAV, the optimal H control algorithm can be implemented for evaluation in SiL simulation. Hence, the stability of the Pelican MAV can be observed. Regarding MAVs control evaluation, SiL simulation potentially contributes to save battery time, to ease control synthesis and prototyping and to prevent accidents during tests with the real robot. Results of Pelican stabilization in SiL simulation in hovering mode are presented and discussed.
机译:本文提出了一种新颖的软件在环评估(SiL),该仿真针对四旋翼飞机中的MAV(微型飞机)的稳定性问题,针对最优H 鲁棒控制器。雇用©Ascending Technologies Pelican MAV。鲁棒控制器的合成以γ迭代算法为基础,这导致了以衰减水平为边界的MIMO最优控制器。 SiL平台的核心是由USP / EESC的ART(空中机器人团队)开发的名为FVMS(飞行变量管理系统)的定制C ++ / C#软件,能够处理与©Microsoft Flight Simulator(MSFS)的全双工通信。 。反过来,MSFS充当虚拟环境,通过它可以配置和仿真Pelican MAV的完整动态和图形模型。由于FVMS可以完全达到与模拟MAV相关的每个变量,因此可以实现最佳H 控制算法,以便在SiL仿真中进行评估。因此,可以观察到鹈鹕MAV的稳定性。关于MAV的控制评估,SiL仿真可能有助于节省电池时间,简化控制综合和原型设计并防止在使用真实机器人进行测试期间发生事故。提出并讨论了在悬停模式的SiL模拟中鹈鹕稳定的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号