首页> 外文会议>2013 Fifth Conference on Measuring Technology and Mechatronics Automation. >Optimal Orientations and Locations of Actuators and Sensors for Structural Shape Control, Using Intelligent Algorithms
【24h】

Optimal Orientations and Locations of Actuators and Sensors for Structural Shape Control, Using Intelligent Algorithms

机译:使用智能算法进行结构形状控制的致动器和传感器的最佳方向和位置

获取原文
获取原文并翻译 | 示例

摘要

Optimal design of the orientations and locations of collocated piezoelectric actuators/sensors pairs for a plate-like structure under bending load uncertainty are determined with the objective of minimizing the deflection and electrical input under any sort of loading. The bending moments generated by the piezoelectric actuator actuators are used for deflection control, i.e., to minimize the deflection. The plate-like structure is subjected to an arbitrary load which lies in an uncertainty domain with regard to its magnitude and direction. The uncertain loading studied in the present paper involves a load of unknown magnitude and direction, which should be determined to produce the arbitrary deflection. Two optimization variables are considered for each piezoelectric actuator/sensor device: the location of its center and its orientation. An optimal control algorithm and three types of artificial intelligence algorithms (AISOOL algorithm--Artificial Immune Systems for optimization of orientations and locations of actuators, ACOPSOOOL algorithm--ACO and PSO for optimization of orientations and locations of actuators, HTOOL algorithm--Hop field-Tank for optimization of orientations and locations of actuators, optimal control algorithm) are presented for the determination of the orientation and location of piezoelectric actuators/sensors in the application to shape control of plate-like structures. Numerical results show that simultaneous optimization of both orientations and locations can lead to optimum configurations that consume less electrical energy and minimizing the deflection. AISOOL algorithm can handle the optimization of orientations and locations of actuators/sensors better than ACOPSOOOL algorithm and HTOOL algorithm. The different algorithms exhibit similar performance. However, exhaustive ACOPSOOOL algorithm and HTOOL algorithm require significantly higher computational effort.
机译:确定在弯曲载荷不确定性下用于板状结构的并置压电致动器/传感器对的方向和位置的最佳设计,其目的是使在任何载荷下的挠曲和电输入最小化。由压电致动器致动器产生的弯矩用于偏转控制,即,以最小化偏转。板状结构承受任意载荷,该载荷就其大小和方向而言处于不确定范围内。本文研究的不确定载荷涉及大小和方向未知的载荷,应确定其载荷以产生任意挠度。每个压电致动器/传感器设备考虑两个优化变量:其中心位置和方向。最优控制算法和三种人工智能算法(AISOOL算法-用于优化执行器方向和位置的人工免疫系统,ACOPSOOOL算法-用于优化执行器方向和位置的ACO和PSO,HTOOL算法-跳场-提出了用于优化致动器的方向和位置的容器,最佳控制算法,用于确定压电致动器/传感器的方向和位置,以用于板状结构的形状控制。数值结果表明,同时优化方向和位置可以导致最佳配置,从而减少电能消耗并最小化挠度。与ACOPSOOOL算法和HTOOL算法相比,AISOOL算法可以更好地处理执行器/传感器的方向和位置优化。不同的算法表现出相似的性能。但是,穷举的ACOPSOOOL算法和HTOOL算法需要大量的计算工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号