首页> 外文会议>2013 Abstracts IEEE International Conference on Plasma Science >Operation of a cold DC operated air plasma jet for microbiol decontamination
【24h】

Operation of a cold DC operated air plasma jet for microbiol decontamination

机译:用于微生物净化的冷直流操作空气等离子体射流的操作

获取原文
获取原文并翻译 | 示例

摘要

Non-thermal plasmas offer an effective method for sterilization. For medical applications, such as wound care or plaque removal, the plasma must be cold, i.e. at room temperature. Further it is necessary to conduct a treatment at atmospheric pressure in ambient air. One solution is offered by plasma jets that are generated from discharges operated with noble gases. Alternatively, a cold plasma jet can be generated directly from ambient air in a microhollow cathode discharge geometry. In this configuration a discharge is operated by a dc voltage on the order of 1–2 kV and currents of several milliamps. By flowing air through the discharge channel, a jet is expelled which reaches gas flow rates of about 8 slm room temperature within a few millimeters from the discharge. The efficacy of this setup was recently succesfully demonstrated against different bacteria and yeast1. The microorganisms were plated in 100-mm petri dishes and a 20 mm × 20 mm square was treated by moving the jet in a meander pattern across this area. C. kefyr was the most difficult to inactivate and required an exposure time of 215 s for a reduction of 4-log steps. Whereas for S. aureus a 5.5-log reduction was already achieved in 52 seconds and complete inactivation of 6-log steps in 111 s. Most interestingly it was found that S. aureus and C. kefyr were also affected far outside the immediate treatment area while the effect on other bacteria was limited only to the area directly exposed to the jet. We hypothesize that different interaction mechanisms are responsible for different inactivation rates and are in particular responsible for different inactivation patterns. The most dominant species that was found in the jet's effluent is nitric oxide (NO). Distributions of nitric oxides and different cell susceptibilities might therefore be responsible for the observed inactivation patterns. Accordingly, the topic of our study are nitric oxide concentrations depending on ope- ating parameters, such as power dissipated in the plasma, and gas flow rates. In addition we consider the effect of humidity on the generation of radical species (and on the plasma chemistry in general) and with respect to the observed inactivation kinetics.
机译:非热等离子体提供了一种有效的灭菌方法。对于医疗应用,例如伤口护理或去除斑块,血浆必须是冷的,即在室温下。另外,有必要在大气压下在环境空气中进行处理。等离子体射流提供了一种解决方案,该等离子体射流是由使用稀有气体进行的放电产生的。可替代地,可以以微空心阴极放电几何形状直接从环境空气中产生冷等离子体射流。在这种配置中,放电是通过直流电压1-2 kV和几毫安的电流进行的。通过使空气流过排放通道,射流被排出,在距排放几毫米的范围内达到约8 slm室温的气体流速。最近成功证明了这种装置对不同细菌和酵母 1 的功效。将微生物接种在100毫米培养皿中,并通过将射流以曲折方式在该区域移动来处理20毫米×20毫米的正方形。 C. kefyr是最难灭活的,需要215 s的暴露时间才能减少4-log步数。而对于金黄色葡萄球菌,在52秒内已实现5.5 log的降低,并在111 s内完全失活了6 log的步骤。最为有趣的是,发现金黄色葡萄球菌和开菲尔酵母也受到了直接治疗区域以外的影响,而对其他细菌的影响仅限于直接暴露于射流的区域。我们假设不同的相互作用机制负责不同的失活率,尤其是负责不同的失活模式。在喷气机的流出物中发现的最主要的物种是一氧化氮(NO)。一氧化氮的分布和不同的细胞敏感性可能是导致观察到的失活模式的原因。因此,我们研究的主题是一氧化氮的浓度,取决于操作参数,例如等离子体中的耗散功率和气体流速。另外,我们考虑了湿度对自由基种类的生成(以及一般对等离子体化学的影响)以及观察到的失活动力学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号