首页> 外文会议>2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. >Geometric Complexity Theory V: Equivalence between Blackbox Derandomization of Polynomial Identity Testing and Derandomization of Noether's Normalization Lemma
【24h】

Geometric Complexity Theory V: Equivalence between Blackbox Derandomization of Polynomial Identity Testing and Derandomization of Noether's Normalization Lemma

机译:几何复杂度理论V:多项式身份测试的黑盒去随机化与Noether归一化引理的去随机化之间的等价关系

获取原文
获取原文并翻译 | 示例

摘要

It is shown that black-box derandomization of polynomial identity testing (PIT) is essentially equivalent to derandomization of Noether's Normalization Lemma for explicit algebraic varieties, the problem that lies at the heart of the foundational classification problem of algebraic geometry. Specifically: (1) It is shown that in characteristic zero black-box derandomization of PIT for diagonal depth three circuits brings the problem of derandomizing Noether's Normalization Lemma, for the ring of invariants of any explicit linear action of a classical algebraic group of constant dimension, from EXPSPACE (where it is currently) to P. Next it is shown that assuming the Generalized Riemann Hypothesis (GRH), instead of the black-box derandomization hypothesis, brings the problem from EXPSPACE to quasi-PH, instead of P. Thus black-box derandomization of diagonal depth three circuits takes us farther than GRH here on the basis of the current knowledge. Variants of the main implication are also shown assuming, instead of the black-box derandomization hypothesis in characteristic zero, Boolean lower bounds for constant-depth threshold circuits or uniform Boolean conjectures, in conjunction with GRH. These results may explain in a unified way why proving lower bounds or derandomization results for constant-depth arithmetic circuits in characteristic zero or constant-depth Boolean threshold circuits, or proving uniform Boolean conjectures without relativizable proofs has turned out to be so hard, and also why GRH has turned out to be so hard from the complexity-theoretic perspective. Thus this investigation reveals that the foundational problems of Geometry (classification and GRH) and Complexity Theory (lower bounds and derandomization) share a common root difficulty that lies at the junction of these two fields. We refer to it as the GCT chasm. (2) It is shown that black-box derandomization of PIT in a strengthened form implies derandomization of Noether's Normalization - emma in a strict form for any explicit algebraic variety. (3) Conversely, it is shown that derandomization of Noether's Normalization Lemma in a strict form for specific explicit varieties implies this strengthened form of black box derandomization of PIT and its various variants. (4) A unified geometric complexity theory (GCT) approach to derandomization and classification is formulated on the basis of this equivalence.
机译:结果表明,多项式恒等性检验(PIT)的黑盒去随机化实质上等同于显式代数变体的Noether归一化引理的去随机化,这个问题是代数几何基础分类问题的核心。具体而言:(1)表明,在对角深度的PIT的特征零黑箱去随机化中,三个电路带来了对Noether归一化引理进行去随机化的问题,这对于恒定维数的经典代数群的任何显式线性作用的不变量环,从EXPSPACE(当前所在位置)到P。接下来,我们证明了假设广义Riemann假设(GRH)而不是黑盒去随机化假设将问题从EXPSPACE转移到准PH而不是P。根据目前的知识,对角深度三个电路的黑匣子去随机化使我们比GRH走得更远。还显示了主要含义的变化,这些假设是代替恒定零阈值电路的布尔下限或统一布尔猜想,而不是特征零的黑盒去随机化假设,并结合GRH。这些结果可以用统一的方式解释为什么证明特征零或恒定深度布尔阈值电路中的恒定深度算术电路的下界或去随机化结果,或证明没有可辩证性的统一布尔猜想变得如此困难,并且从复杂性理论的角度来看,为什么GRH如此困难?因此,这项调查表明,几何学(分类和GRH)和复杂性理论(下界和非随机化)的基本问题存在着共同的根本难题,这是这两个领域的交汇处。我们将其称为GCT鸿沟。 (2)研究表明,增强形式的PIT的黑盒去随机化意味着Noether的Normalization-Emma对于任何显式代数形式的严格形式的去随机化。 (3)相反地,表明严格的Noether归一化引理对特定显性品种的去随机化意味着PIT及其各种变体的黑盒去随机化的这种增强形式。 (4)在此等价性的基础上,提出了统一的几何复杂度理论(GCT)进行随机化和分类的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号