首页> 外文会议>2005 SPE annual technical conference and exhibition (ATCE 2005) >Acoustic and Quasistatic Laboratory Measurement and Calibration of the PorePressure Prediction Coefficient in the Poroelastic Theory
【24h】

Acoustic and Quasistatic Laboratory Measurement and Calibration of the PorePressure Prediction Coefficient in the Poroelastic Theory

机译:孔隙弹性理论中孔隙压力预测系数的声学和准静态实验室测量与校准

获取原文
获取原文并翻译 | 示例

摘要

The rock mechanical poromechanics pressure property, orrnBiot's effective stress parameter, α , is an important rockrnmatrix and grain characteristic. The Biot's parameter relatesrnstress and pore pressure and weighs the effect of the porernpressure within the concept of the effective stress analysis, inrnthe geomechanics disciplines, and in particular when appliedrnto reservoir engineering and wellbore time-dependent drillingrnmechanics and stability. It measures the compressibility of thernskeletal framework of the rock with respect to the solidrnmaterial composing the rock. In addition, it also reflects therncompressibility of the rock structure which is one of the mostrnimportant parameters for predicting oil reserves.rnThe poroelastic constant, α , is a complex function of thernrock in-situ stress and porosity. The petroleum industry hasrnhistorically calibrated empirical pore pressure relationships tornthe effective stress assuming a value of α to be unity or arnconstant value that may change as the reservoir is beingrndepleted. A theoretical and experimental understanding of thernmeasurements of the poroelastic constant, α , should improvernthe existing models in the areas lacking the data necessary forrnan accurate calibration.rnThe paper discusses the various methods of measuring thernrock poroelastic parameter, α . These methods include quasi-staticrnand acoustic approaches. In the quasi-static approach,rntwo experimental set-ups, known as the direct and indirectrnmethods, were used in this study to determine α , comparedrnsimultaneously with the acoustic method which is based on therncompressional and shear wave velocities measurements underrnhydrostatic loading.rnThe direct method using the quasi-static approach utilizes the measurements of the change in pore volume and bulkrnvolume of the sample for the calculation of α while thernindirect method uses the bulk modulus of the fluid saturatedrnrock sample and solid grains in the computation of α . Thernacoustic approach of measuring α utilizes the measurements ofrnboth compressional and shear wave velocities to compute bulkrnmodulus which is then used to compute α ; thus, very similar tornthe indirect technique. The measurements of α using thesernapproaches were performed on fluid-saturated Berea cores,rnwith mineral oil as the saturating fluid. The results obtainedrnfrom these various techniques are discussed in this work.rnThe indirect method reveals a higher magnitude of thernporoelastic constant, α , compared with direct methodrnmeasurements. This difference was found to be large forrnsamples with high porosity, while for low porosity samples thernmagnitude for the poroelastic constant, α , measured using therntwo methods was comparable. This is due the fact that lowrnporosity samples have high bulk modulus which tends tornlower the magnitude of the poroelastic constant, α , when usingrnthe indirect method. The acoustic measurements showed thernsensitivity of α to the stress level at which it was measured.rnThe magnitude of the poroelastic constant, α , dropped by 20%rnfor some samples when the pressure increased from 1000 torn9000 psi. The results of this work also indicate that thernmeasurements of the poroelastic constant, α , using the directrnmethod and acoustic method at early pressure are quite similarrnfor the case of low porosity sample. For high porosityrnsamples the magnitude of the poroelastic constant, α ,rnmeasured from direct methods was found to fall in the rangernof acoustic measurements at high pressure. The quasi-staticrndirect method showed a good prediction of α in the absence ofrnthe jacketing effect.
机译:岩石力学孔隙力学压力特性orrnBiot的有效应力参数α是重要的岩石基质和晶粒特征。比奥的参数将应力和孔隙压力联系起来,并在有效应力分析,地质力学学科,尤其是在油藏工程和随时间变化的钻井力学和稳定性方面应用的概念中权衡孔隙压力的影响。它测量岩石的骨架结构相对于构成岩石的固体材料的可压缩性。此外,它还反映了岩石结构的可压缩性,这是预测石油储量最重要的参数之一。孔隙弹性常数α是地层岩石原位应力和孔隙度的复杂函数。石油工业已经对历史有效压力与经验孔隙压力关系进行了历史性校准,假定α值为单位或正常数,并且可能随着储层的枯竭而发生变化,从而改变了有效应力。从理论上和实验上对孔隙弹性常数α的测量方法的理解,应该可以在缺乏准确校准所需数据的领域中改进现有模型。本文讨论了多种测量孔隙岩弹性参数α的方法。这些方法包括准静态方法和声学方法。在准静态方法中,本研究中使用了两种实验方法,分别称为直接方法和间接方法,以确定α,同时与基于静水载荷下压缩和剪切波速度测量的声学方法进行了比较。使用准静态方法利用样品孔隙体积和体积变化的测量值来计算α,而间接法则使用流体饱和岩石样品和固体颗粒的体积模量来计算α。测量α的声学方法是利用压缩波和剪切波速的测量来计算体积模量,然后用来计算α;因此,非常类似于间接技术。使用sernappache方法对α进行的测量是在流体饱和的Berea岩心上,以矿物油作为饱和流体。本文讨论了从各种技术获得的结果。与直接方法相比,间接方法显示出更大的孔隙弹性常数α。发现该差异是具有高孔隙率的大样品,而对于低孔隙率样品,使用两种方法测量的孔隙弹性常数α的大小是可比的。这是由于以下事实:低孔隙度样品具有较高的体积模量,当使用间接方法时,往往会降低孔隙弹性常数α的大小。声学测量结果显示了α对所测量应力水平的敏感性。对于某些样品,当压力从1000升高到9000 psi时,孔隙弹性常数α的幅度下降了20%。这项工作的结果还表明,对于低孔隙度样品,在早期压力下使用直接方法和声学方法对孔隙弹性常数α的测量非常相似。对于高孔隙率样品,发现用直接方法测得的孔隙弹性常数α的值落在高压下的测距范围内。在没有护套效应的情况下,准静态直接法显示出对α的良好预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号