首页> 外文会议>2005 Offshore technology conference (OTC'05) >Lessons Learned From the Evolution and Development of Multiple-Lines Hybrid RiserTowers for Deep Water Production Applications
【24h】

Lessons Learned From the Evolution and Development of Multiple-Lines Hybrid RiserTowers for Deep Water Production Applications

机译:从多线混合RiserTowers的发展演变中汲取的经验教训,适用于深水生产

获取原文
获取原文并翻译 | 示例

摘要

The multiple-lines hybrid riser tower which was first applied inrnthe late 1980’s in the Gulf of Mexico, and more recently to deepwaterrnFPSO projects at the Girassol field in Angola, is nowrnstarting to be applied more widely on other deep water projects.rnThis paper presents the lessons learnt from the design of recentrnhybrid riser tower applied to meet the requirements of severalrndifferent deep water field developments. The paper specificallyrnaddresses the various changes made to the Hybrid Riser Towerrnrelating to the design, fabrication and installation. Thernperformance aspects are discussed along with informationrncovering the overall costs associated with the use of riser towersrnas opposed to other single riser line concept. The paper alsornconcludes on the possible future evolution of the HRT to meetrnthe future ultra deep-water developments.rnIntroduction:rnThe first generation of multiple-lines hybrid riser tower (HRT),rncalled FSPR (Free Standing Production Riser), was designed as arncost effective re-usable riser system by Cameron Iron Works inrn1983 and installed in 1988 by Placid on the Green Canyon fieldrnblock 29 (see reference 1). The structure was then upgraded andrnreinstalled on the deeper Garden Bank field (2096 feet waterrndepth) by Enserch in 1994 (see reference 2). This early conceptrnof HRT used the drilling technology to assemble the riser bundlernwith adequate buoyancy from a drilling rig; the riser tower footrnand spools were connected to a subsea base manifold and flexiblernjumpers at the top were connected to the rig. Refer to fig 1. Thernconcept proved to be cost effective and well adapted to operate inrnthe Gulf of Mexico environment.rnIn 1997 Total called for a design competition to define thernsubsea architecture of the Girassol field (1450m WD) discoveredrnin Angola. Stolt Offshore proposed three riser towers of what canrnbe considered the second generation of HRT after the firstrnexperience in the Gulf of Mexico. This technological choice wasrnmainly motivated by the stringent thermal insulation requirementrnimposed by the field operations and the layout (see reference 3).rnThis second-generation design of HRT was completely designedrnto accommodate the specific fabrication and installationrnrequirements associated with the Girassol field and itsrngeopolitical environment.rnThe AMG consortium consisting of Stolt Offshore (67%) andrnSaipem (33%) was awarded the contract for designing,rnfabricating and installing the Umbilical, Flowline and Riserrnsystem which included the three HRTs. The Girassol field, whichrnwas designed for a nominal production of 200,000 bbl/d has inrnpractice been capable of significantly higher production rates.rnThis success encouraged Stolt Offshore to further develop thernconcept and use the lessons learnt from the Girassol project tornimprove the HRT design and take it into the third generation ofrnHRT refer to Fig 2. The Greater Plutonio field operated by BP inrnAngola will be equipped with an HRT of the third generation.rnOther Contractors and Operators also consider the HRT for theirrndeep-water field development. This accumulation of experiencerncertainly allows to consider a possible design evolution towardsrnthe forth generation of ultra deep water HRT in beyond 2000mrnwater depth.
机译:多线混合立管塔架最初于1980年代末在墨西哥湾应用,最近又应用于安哥拉Girassol油田的深水FPSO项目,现在开始在其他深水项目中得到更广泛的应用。从最近的混合式立管塔的设计中学到的经验教训可满足不同深水领域开发的要求。本文专门针对混合立管塔进行了与设计,制造和安装有关的各种更改。讨论了性能方面,并提供了信息,该信息涵盖了与使用立式塔式起重机(与其他单一立式管道概念相反)相关的总体成本。本文还总结了HRT的未来发展趋势,以适应未来的超深水开发。rn简介:rn第一代多线路混合立式塔(HRT),称为FSPR(独立式生产立管),被设计为成本有效的可重复使用的立管系统,由Cameron Iron Works于1983年安装,于1988年由Placid安装在Green Canyon地块29上(请参阅参考资料1)。然后,该结构在1994年由Enserch升级并重新安装在花园银行深处(水深2096英尺)(请参阅参考文献2)。早期的概念HRT使用钻探技术来组装立管束,并从钻机中获得足够的浮力。立管塔脚和线轴连接到海底底座歧管,顶部的柔性跳板连接到钻机。参见图1。该概念被证明具有成本效益,并且非常适合在墨西哥湾环境中运行。1997年,Total呼吁进行设计竞赛,以定义在安哥拉发现的Girassol油田(西海岸1450m WD)的海底建筑。 Stolt Offshore提出了三座立管塔,它们被认为是继墨西哥湾的第一代HRT之后的第二代HRT。该技术选择主要是由现场操作和布局所提出的严格的绝热要求促成的(请参见参考文献3)。-HRT的第二代设计完全是为了适应与Girassol领域及其地缘政治环境相关的特定制造和安装要求而设计的。由Stolt Offshore(67%)和rnSaipem(33%)组成的AMG财团获得了设计,制造和安装包括三个HRT的Umbilical,Flowline和Riserrnsystem的合同。 Girassol油田原本的额定产量为200,000桶/天,但实际上却无法实现更高的生产率。rn这一成功鼓励Stolt Offshore进一步发展概念,并借鉴Girassol项目的经验教训来改进HRT设计并加以采用。进入图3中的第三代HRT。由BP inrnAngola运营的Greater Plutonio油田将配备第三代HRT。其他承包商和运营商也考虑将HRT用于深水油田开发。这种经验的积累可以肯定地考虑在超过2000m水深的情况下朝第四代超深水HRT的可能的设计演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号