【24h】

COST OPTIMIZATION OF PEMFCs THROUGH NUMERICAL MODELING

机译:PEMFCs数值建模的成本优化

获取原文
获取原文并翻译 | 示例

摘要

Aspects of the technical viability of Proton Exchange Membrane Fuel Cells (PEMFCs) have been proven. However, significant further stack technology improvements are needed before commercialization can occur. In particular, the cost and reliability of PEMFC stacks must be improved. To achieve high performance and long reliable life PEMFC stacks still require relatively high platinum loadings. Platinum loadings are further increased if the fuel used contains contaminants such as CO. Current research programs address these issues through materials development (e.g., high temperature electrolyte membranes), newer catalyst designs (e.g., smaller catalyst particles to improve catalyst utilization, use of novel catalysts or platinum alloy catalysts), novel stack operating strategies (e.g., air bleed or anode potential pulsing to enhance CO tolerance). Given the non-linear response of the cell to material, design, or operating conditions changes, as well as the cost of experimentation, research programs that rely only on empirical assessment will prove both time-consuming and costly. The use of suitable modeling tools will enhance effectiveness of the research program because the models can help: 1. Support R&D portfolio management. Models can help phrase and answer what-if questions. E.g., what improvement in CO-tolerance or power density will 120℃ operation provide, relative to 70℃ operation? Models can also help in identifying R&D goals by establishing the limits of potential performance improvements. 2. Support experimental programs directly. Models can help define a crisp null-hypothesis and thus structure the design of an effective experimental matrix. In addition, models can be used to analyze and extrapolate data, and to gain an understanding of the overall impact of complex trade-offs that result from technology changes. In order to be effective, the models must be predictive as opposed to fits to existing data. Predictive models allow one to explore a wide range of the parameter space, especially conditions that are not easily accessible by experiments. PEMFC models contain several sub-models. For the overall model to be applicable over a wide range of conditions, each of these sub-models must also be valid over the range of conditions. We have developed models for estimating the anode and cathode kinetics that are valid over a wide range of conditions. The kinetic parameters in these models have physical significance, i.e., they are related to (he underlying chemistry, and are not merely fitting parameters. A PEMFC model incorporating these kinetic models helps answer what-if questions and helps assess the effectiveness of design/material changes. We have linked the PEMFC performance model to our cost model so as to assess cost implications of performance improvements resulting from design/material changes.
机译:质子交换膜燃料电池(PEMFC)的技术可行性已得到证实。但是,在实现商业化之前,还需要对堆栈技术进行进一步的重大改进。特别是,必须提高PEMFC堆叠的成本和可靠性。为了获得高性能和长寿命,PEMFC电池组仍然需要较高的铂负载量。如果所用燃料中含有诸如CO之类的污染物,铂的负载量将进一步增加。当前的研究计划通过材料开发(例如高温电解质膜),更新的催化剂设计(例如较小的催化剂颗粒以提高催化剂利用率,使用新型催化剂)解决这些问题。催化剂或铂合金催化剂),新颖的烟囱操作策略(例如,通过排气或阳极电势脉冲提高CO耐受性)。考虑到电池对材料,设计或操作条件变化的非线性响应以及实验成本,仅依靠经验评估的研究计划将证明既费时又昂贵。使用合适的建模工具将增强研究计划的有效性,因为这些模型可以帮助:1.支持研发项目组合管理。模型可以帮助表达和回答假设问题。例如,相对于70℃的工作温度,在120℃的工作温度下,CO容差或功率密度会有什么改善?模型还可以通过建立潜在绩效改进的限制来帮助确定R&D目标。 2.直接支持实验程序。模型可以帮助定义清晰的零假设,从而构成有效实验矩阵的设计。此外,可以使用模型来分析和推断数据,并了解由于技术变化而导致的复杂权衡的整体影响。为了有效,模型必须具有预测性,而不适合现有数据。预测模型使人们可以探索广泛的参数空间,尤其是实验难以轻易达到的条件。 PEMFC模型包含几个子模型。为了使整个模型在广泛的条件下适用,这些子模型中的每个子模型也必须在条件范围内有效。我们已经开发了用于估算阳极和阴极动力学的模型,这些模型在各种条件下均有效。这些模型中的动力学参数具有物理意义,即,它们与基础化学有关,而不仅仅是拟合参数。结合了这些动力学模型的PEMFC模型有助于回答假设问题并帮助评估设计/材料的有效性我们已将PEMFC性能模型与成本模型相关联,以评估由于设计/材料变更而导致的性能改进所带来的成本影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号