【24h】

GENETIC EFFECTS ON SKELETAL MECHANOSENSITIVITY IN MICE

机译:遗传对小鼠骨骼机械敏感性的影响

获取原文
获取原文并翻译 | 示例

摘要

The accumulation of bone mass during growth can be enhanced by environmental factors such as mechanical loading (exercise) or calcium intake, but 60-70% of the variance in adult bone mineral density (BMD) is explained by heredity. Consequently, understanding the signaling pathways targeted by the genes governing bone accumulation holds perhaps the greatest potential in reducing fracture incidence later in life. Rodent models are particularly useful for studying the genetics of skeletal traits. Of the available inbred mouse strains, three in particular have been studied extensively in skeletal genetics: C57BL/6, DBA/2, and C3H/He. The C57BL/6 strain is characterized by low BMD and large total cross-sectional area (CSA) in the midshaft femur; the C3H/He strain exhibits very high femoral BMD and a smaller femoral CSA than the C57BL/6 mice; and DBA/2 mice have moderately high femoral BMD and a very small midshaft femur CSA. Mechanical loading of the skeleton during growth can substantially enhance periosteal bone apposition, and ultimately produce a diaphyseal cross section with enlarged area. Therefore we hypothesized that the mouse strain with greater femoral cross-sectional area (C57BL/6) might have a genetic predisposition for greater mechanosensitivity than mice with smaller cross sections (C3H/He and DBA/2). We undertook an investigation of in vivo skeletal mechanosensitivity in three strains of mice, by applying well-controlled dynamic loads to the ulnae and measuring the resulting osteogenic response. We further sought to investigate the role of osteocyte lacuna population density in observed differences in mechanosensitivity. The osteocyte network is commonly thought to be the primary mechanosensory apparatus in bone. We hypothesized that mouse strains exhibiting more mechanosensitive bones would have a greater population density of osteocyte lacunae than bones from mice that are less mechanosensitive.
机译:生长期间骨量的积累可以通过环境因素(例如机械负荷(运动)或钙摄入)来增强,但是成年骨矿物质密度(BMD)变化的60-70%由遗传来解释。因此,了解由控制骨积累的基因靶向的信号通路可能具有减少生命后期骨折发生率的最大潜力。啮齿动物模型对于研究骨骼特征的遗传学特别有用。在可用的近交小鼠品系中,特别是三种在骨骼遗传学中得到了广泛研究:C57BL / 6,DBA / 2和C3H / He。 C57BL / 6应变的特点是股骨中段骨密度低,总截面积大。与C57BL / 6小鼠相比,C3H / He株显示出非常高的股骨BMD和更小的股CSA。 DBA / 2和DBA / 2小鼠具有中等高的股骨BMD和非常小的股骨干中轴CSA。骨骼在生长过程中的机械负荷可显着增强骨膜骨质,并最终产生面积增大的骨干横断面。因此,我们假设具有较大股骨横截面积(C57BL / 6)的小鼠品系可能具有比具有较小横截面(C3H / He和DBA / 2)的小鼠更高的机械敏感性的遗传易感性。我们通过对尺骨施加良好控制的动态负荷并测量所产生的成骨反应,对三种小鼠的体内骨骼机械敏感性进行了研究。我们进一步寻求研究骨细胞腔隙密度在观察到的机械敏感性差异中的作用。骨细胞网络通常被认为是骨骼中主要的机械感觉装置。我们假设与机械敏感性较低的小鼠骨骼相比,表现出较高机械敏感性骨骼的小鼠品系将具有更大的骨细胞腔密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号