首页> 外文会议>The 2001 ASME International Mechanical Engineering Congress and Exposition, 2001, Nov 11-16, 2001, New York, New York >A SIMPLIFIED NUMERICAL MODEL TO PREDICT THE VELOCITY FIELD IN A CATALYTIC CRACKING UNITY IN OIL REFINERIES
【24h】

A SIMPLIFIED NUMERICAL MODEL TO PREDICT THE VELOCITY FIELD IN A CATALYTIC CRACKING UNITY IN OIL REFINERIES

机译:预测炼油厂催化裂化单元速度场的简化数值模型。

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a general computational model for determining the velocity field in either reacting or non-reacting duct flows. The model is then applied to a catalytic cracking unit (FCC) of an oil refinery, to determine the velocity field inside the riser, where reactions take place to convert heavy petroleum fractions in lighter products, like middle distillates and light olefins, with high rates of conversion and productivity. The correct approach to simulate this process is to avoid the plug flow assumption and to solve the full fluid flow problem, based on the mass and momentum conservation equations in a complete formulation, which are shown in the literature to be computationally very expensive and time consuming, mainly in a three-dimensional (3-D) simulation. Since, the main objective of the simulation is the accurate determination of the concentration of the noble products, a very accurate velocity field is not mandatory. Therefore, bidimensional flow is assumed, and a modified set of unsteady mass and momentum conservation equations is proposed and the resulting 2-D differential equations are discretized in space using an upwind cell centered finite differences method, and the equations integrated in time with an implicit backward Euler scheme. The coarsest possible mesh is determined such that the solution relative error is within 5 % when compared to a steady state accurate finite element solution, which was obtained with a 2-D isoparametric, four-noded, linear element that was implemented to solve the complete Navier-Stokes equations for the finite element analysis program, FEAP. The objective of this work is to propose an alternative technique that gives a simplified treatment to the velocity field, to make possible the numerical calculation of the products concentrations in the riser and future application in optimization and real time control. Each cell, in this specific situation, can be understood as a perfect mixing reactor.
机译:本文介绍了一种通用的计算模型,用于确定反应管道或非反应管道中的速度场。然后将该模型应用于炼油厂的催化裂化装置(FCC),以确定提升管内部的速度场,在此发生反应,以较高的速率将轻质产品(如中间馏分油和轻质烯烃)中的重质石油馏分转化转化率和生产率。模拟此过程的正确方法是,根据完整公式中的质量和动量守恒方程,避免塞流假设并解决整个流体流动问题,文献中显示该方程在计算上非常昂贵且耗时,主要用于三维(3-D)仿真。由于模拟的主要目的是精确确定贵重产品的浓度,因此并非必须具有非常精确的速度场。因此,假设存在二维流动,并提出了一组修正的非定常质量和动量守恒方程组,并使用迎风单元中心有限差分方法将所得的二维微分方程组离散化,并且将这些方程组及时地与隐式积分后向欧拉方案。确定最粗的网格时,与稳态精确的有限元解决方案相比,解决方案的相对误差在5%以内,而稳态精确的有限元解决方案是通过二维等参四节点线性元素获得的,该线性元素用于解决完整问题有限元分析程序FEAP的Navier-Stokes方程。这项工作的目的是提出一种替代技术,对速度场进行简化处理,以使冒口中产物浓度的数值计算成为可能,并在未来的优化和实时控制中应用。在这种特定情况下,每个单元可以理解为一个完美的混合反应器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号