【24h】

Telomeres, Checkpoints and Chromosomal Instability

机译:端粒,检查站和染色体不稳定

获取原文
获取原文并翻译 | 示例

摘要

Genetic instability as it occurs in cancer appears to occur by a variety of mechanisms. Notable examples include microsatellite instability associated with genetic defects in heteroduplex and mismatch repair (e.g. MLH1), chromosome number instability associated with genetic defects in spindle-damage checkpoint function (e.g. BUB1), and chromosome structure instability associated with genetic defects in DNA repair (BRCA1) and DNA damage checkpoint function (ATM). A common theme uniting all forms of genetic instability is the presence of mutations in genes that are needed for the complete and accurate replication and segregation of the genome during the cell division cycle. Thus cancer can be thought of as a disease of aberrant DNA metabolism. Its malignant characteristic of progression to higher stage and grade may be a direct consequence of the elevated mutation rate that derives from the primary defect in DNA metabolism. The tumour suppressor gene TP53 is not commonly thought of as an element of DNA metabolism. However, recent data link its function to nucleotide excision repair through transactivation of p48/XPE, which stimulates global excision repair of UV-radiation-induced pyrimidine dimers. TP53-dependent transactivation of the cyclin-dependent kinase inhibitor CDKN1A also should contribute to DNA repair by delaying the initiation of DNA replication and thereby providing more time for repair. The DNA damage G_1-phase checkpoint function served by TP53 through CDKN1A also stabilises chromosomes by arresting growth at the time of senescence. This replicative senescence checkpoint suppresses the growth of cells with critically eroded, unstable telomeres. Our studies of telomeres, checkpoints and chromosomal instability point to a complex gestalt of interacting systems that deteriorate when TP53 function is ablated. The TP53 sobriquet, guardian of the genome, is well-deserved.
机译:在癌症中发生的遗传不稳定性似乎是由多种机制引起的。值得注意的例子包括与异源双链和错配修复中的遗传缺陷相关的微卫星不稳定性(例如MLH1),与纺锤体损伤检查点功能中的遗传缺陷相关的染色体数不稳定性(例如BUB1)以及与DNA修复中的遗传缺陷相关的染色体结构不稳定性(BRCA1) )和DNA损坏检查点功能(ATM)。统一所有形式的遗传不稳定性的一个共同主题是基因突变的存在,这是细胞分裂周期中基因组的完整和准确复制和分离所必需的。因此,癌症可以被认为是DNA代谢异常的疾病。其恶性发展到更高的阶段和等级可能是DNA代谢的主要缺陷引起的突变率升高的直接结果。肿瘤抑制基因TP53通常不被认为是DNA代谢的要素。然而,最近的数据通过p48 / XPE的反式激活将其功能与核苷酸切除修复联系起来,从而刺激了紫外线辐射诱导的嘧啶二聚体的整体切除修复。细胞周期蛋白依赖性激酶抑制剂CDKN1A的TP53依赖性反式激活也应通过延迟DNA复制的启动,从而为修复提供更多时间,从而有助于DNA修复。 TP53通过CDKN1A提供的DNA损伤G_1期检查点功能还可以通过阻止衰老时的生长来稳定染色体。该复制性衰老检查点可抑制具有严重侵蚀的不稳定端粒的细胞生长。我们对端粒,检查点和染色体不稳定性的研究表明,相互作用的系统的复杂格式塔在TP53功能被消除时会恶化。 TP53 sobriquet,基因组的守护者,当之无愧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号