首页> 外文会议>The 10th International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science (EPMESC X) >Finer-Scale Characterization and Scale Transition of Viscoelastic Properties within the Multiscale Framework of Material Description
【24h】

Finer-Scale Characterization and Scale Transition of Viscoelastic Properties within the Multiscale Framework of Material Description

机译:材料描述多尺度框架内粘弹性特性的细尺度表征和尺度转变

获取原文
获取原文并翻译 | 示例

摘要

Recent progress in both finer-scale experimentation (atomic force microscopy, nanoindentation, …) and theoretical and numerical upscaling schemes provides the basis for the development of so-called multiscale models, taking finer scales of observation into account. Hereby, chemical, physical, and mechanical processes taking place at finer scales can be considered and their effect on the macroscopic material performance is obtained via appropriate upscaling schemes. The success of multiscale models is strongly linked to the proper identification of material properties at finer scales, serving as input for the upscaling schemes. In this paper, extraction of material parameters by means of the nanoindentation technique is presented. Whereas the extraction of elastic parameters dates back to the 1990s, the focus of this paper is on the extraction of viscoelastic properties. Hereby, the experimental data are compared with the respective analytical solution for the mathematical problem of a rigid indenter penetrating a viscoelastic medium, giving access to the viscoelastic material properties at finer scales. Finally, continuum micromechanics is employed for upscaling of the identified viscoelastic parameters. The proposed identification and upscaling scheme is applied to cement-based and bituminous mixtures, both characterized by a matrix-inclusion morphology, with cement and bitumen, respectively, serving as binder material.
机译:在更精细的实验(原子力显微镜,纳米压痕等)以及理论和数值放大方案方面的最新进展,为考虑到更精细观察尺度的所谓多尺度模型的发展提供了基础。因此,可以考虑以更小规模进行的化学,物理和机械过程,并且它们通过适当的放大方案可以获得对宏观材料性能的影响。多尺度模型的成功与在较小尺度上正确识别材料属性紧密相关,可作为放大方案的输入。本文提出了利用纳米压痕技术提取材料参数的方法。弹性参数的提取可以追溯到1990年代,而本文的重点是粘弹性特性的提取。在此,将实验数据与相应的解析解决方案进行比较,以解决刚性压头穿透粘弹性介质的数学问题,从而可以更精细地获得粘弹性材料的性能。最后,采用连续的微力学来放大确定的粘弹性参数。所提出的识别和放大方案适用于水泥基和沥青混合物,二者均具有基质-包裹体形态特征,分别以水泥和沥青作为粘合剂材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号