首页> 外文学位 >Physically-based modeling, estimation and control of the gas exchange and combustion processes for diesel engines utilizing variable intake valve actuation.
【24h】

Physically-based modeling, estimation and control of the gas exchange and combustion processes for diesel engines utilizing variable intake valve actuation.

机译:基于柴油机的可变进气门致动的气体交换和燃烧过程的基于物理的建模,估计和控制。

获取原文
获取原文并翻译 | 示例

摘要

In this work, a low-order five state model of the air handling system for a multi-cylinder variable geometry turbocharged diesel engine, with cooled exhaust gas recirculation and flexible intake valve actuation, is developed and validated against 286 steady state and 62 transient engine operating points. The model utilizes engine speed, engine fueling, EGR valve position, VGT nozzle position and intake valve closing time as inputs to the model. The model outputs include calculation for the engine flows as well as the exhaust temperature exiting the cylinder. The gas exchange model captures the dynamic effects of not only the standard air handling actuators (EGR valve position and VGT position) but also intake valve closing (IVC) timing, exercised over their useful operating ranges, and thus is critical for designing robust controllers. The model's capabilities are enabled through the use of analytical functions to describe the performance of the turbocharger, eliminating the need to use look-up maps; a physically-based control-oriented exhaust gas enthalpy sub-model, and a physically-based volumetric efficiency sub-model. Traditional empirical or regression-based models for volumetric efficiency, while suitable for conventional valve trains, are therefore challenged by flexible valve trains. The added complexity and additional empirical data needed for wide valve timing ranges limit the usefulness of these methods. A simple physically-based volumetric efficiency model was developed to address these challenges. The model captures the major physical processes occurring over the intake stroke, and is applicable to both conventional and flexible intake valve trains. The model inputs include temperature and pressure in both the intake and exhaust manifolds, intake and exhaust valve event timings, engine cylinder bore, stroke, connecting rod lengths, engine speed and effective compression ratio. The model is physically-based, requires no regression tuning parameters, is generalizable to other engine platforms, and has been experimentally validated using an advanced multi-cylinder diesel engine equipped with a fully flexible variable intake valve actuation system.;The in-cylinder oxygen fraction serves as a critical control input to these strategies, but is extremely difficult to measure on production engines. Fortunately, estimates or measurements of the oxygen fraction in the intake and exhaust manifold, the in-cylinder charge mass, and residual mass can be utilized to calculate the in-cylinder oxygen fraction. This work outlines such a physically-based, generalizable strategy to estimate the in-cylinder oxygen fraction from only production viable measurements or estimates of exhaust oxygen fraction, fresh air flow, charge flow, fuel flow, turbine flow and EGR flow. The oxygen fraction estimates are compared to laboratory grade measurements available for the intake and exhaust manifolds. The oxygen fraction estimates will be shown to be particularly sensitive to errors in the EGR and turbine flow. To improve the EGR flow estimate, a high-gain observer is implemented to improve the estimate of EGR flow. Furthermore, the in-cylinder oxygen estimation algorithm is developed, and proven, to be robust to turbine flow errors. The model-based observer estimates the oxygen fractions to within 0.5% O 2 and is shown to have exponential convergence with a time constant less than 0.05 seconds, even with turbine flow errors of up to 25%. The observer is applicable to engines utilizing high pressure cooled exhaust gas recirculation, variable geometry turbocharging and flexible intake valve actuation.;Advanced combustion modes, such as diesel PCCI, operate near the system stability limits. In PCCI, the combustion event begins without a direct combustion trigger in contrast to traditional spark-ignited gasoline engine and direct-injected diesel engines. The lack of a direct combustion trigger necessitates the usage of model-based controls to provide robust control of the combustion phasing. The nonlinear relationships between the control inputs and the combustion system response often limit the effectiveness of traditional, non-model-based controllers. Accurate knowledge of the system states and inputs is required for implementation of an effective nonlinear controller. The previously described in-cylinder oxygen fraction estimator, physically-based volumetric efficiency model, PCCI combustion timing model and gas exchange model provide the required information. A nonlinear controller is developed and implemented based upon these models to control the engine combustion timing during diesel PCCI operation by targeting desired values of the in-cylinder oxygen concentration, pressure, and temperature during early fuel injection. (Abstract shortened by UMI.).
机译:在这项工作中,开发了具有冷却的废气再循环和灵活的进气门致动的多缸可变几何涡轮增压柴油机的空气处理系统的低阶五态模型,并针对286稳态和62瞬态发动机进行了验证。工作点。该模型利用发动机转速,发动机加油,EGR阀位置,VGT喷嘴位置和进气门关闭时间作为模型的输入。模型输出包括发动机流量的计算以及离开汽缸的排气温度。气体交换模型不仅捕获了标准空气处理执行器(EGR气门位置和VGT位置)的动态影响,而且还捕获了进气门关闭(IVC)正时(在其有用的工作范围内执行)的动态影响,因此对于设计坚固的控制器至关重要。该模型的功能通过使用分析功能来描述涡轮增压器的性能来实现,从而无需使用查找图;一个基于物理的,面向控制的废气焓子模型和一个基于物理的体积效率子模型。因此,尽管适用于常规气门机构,但传统的基于经验或基于回归的容积效率模型却受到柔性气门机构的挑战。宽阀正时范围所需的额外复杂性和其他经验数据限制了这些方法的实用性。开发了一个简单的基于物理的体积效率模型来应对这些挑战。该模型捕获了进气冲程中发生的主要物理过程,并且适用于常规进气门机构和柔性进气门机构。模型输入包括进气和排气歧管中的温度和压力,进气和排气门事件正时,发动机气缸孔,冲程,连杆长度,发动机转速和有效压缩比。该模型是基于物理的,不需要回归调整参数,可推广到其他发动机平台,并已使用配备有完全可变的可变进气门致动系统的先进多缸柴油发动机进行了实验验证。分数是这些策略的关键控制输入,但在生产引擎上很难衡量。幸运的是,可以利用进气歧管和排气歧管中的氧气含量,缸内充气质量和残余质量的估计值或测量值来计算缸内氧气含量。这项工作概述了这种基于物理的,可推广的策略,仅从生产可行的测量结果或排气氧含量,新鲜空气流量,充气流量,燃料流量,涡轮流量和EGR流量的估算中估算缸内氧气含量。将氧气分数估算值与可用于进气和排气歧管的实验室级测量值进行比较。氧气含量估算值将显示出对EGR和涡轮流量误差特别敏感。为了改善EGR流量估算,实施了高增益观察器以改善EGR流量估算。此外,开发并证明了缸内氧气估算算法对涡轮流量误差具有鲁棒性。基于模型的观察者估计氧气分数在0.5%O 2内,并且显示出具有指数收敛性,时间常数小于0.05秒,即使涡轮机流量误差高达25%。该观察者适用于利用高压冷却的废气再循环,可变几何涡轮增压和灵活的进气门致动的发动机。先进的燃烧模式,例如柴油PCCI,在系统稳定性极限附近运行。在PCCI中,与传统的火花点火汽油发动机和直接喷射柴油发动机相比,燃烧事件是在没有直接燃烧触发的情况下开始的。缺少直接燃烧触发器需要使用基于模型的控制来提供对燃烧定相的鲁棒控制。控制输入​​与燃烧系统响应之间的非线性关系通常会限制传统的,非基于模型的控制器的有效性。要实现有效的非线性控制器,需要准确了解系统状态和输入。先前描述的缸内氧气分数估算器,基于物理的体积效率模型,PCCI燃烧正时模型和气体交换模型提供了所需的信息。基于这些模型开发并实施了非线性控制器,以在早期燃油喷射期间确定缸内氧气浓度,压力和温度的理想值为目标,从而控制柴油PCCI运行期间的发动机燃烧正时。 (摘要由UMI缩短。)。

著录项

  • 作者

    Kocher, Lyle E.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号