...
首页> 外文期刊>International journal of engine research >Physically based volumetric efficiency model for diesel engines utilizing variable intake valve actuation
【24h】

Physically based volumetric efficiency model for diesel engines utilizing variable intake valve actuation

机译:利用可变进气门驱动的基于物理的柴油机容积效率模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Advanced diesel engine architectures employing flexible valve trains enable emissions reductions and fuel economy improvements. Flexibility in the valve train allows engine designers to optimize the gas exchange process in a manner similar to how common rail fuel injection systems enable optimization of the fuel injection process. Modulating valve timings directly impacts the volumetric efficiency of the engine since it directly controls how much mass is trapped in the cylinders. In fact, it will be shown that the control authority of valve timing modulation over volumetric efficiency, that is, the range of volumetric efficiencies achievable due to modulation of the valve timing, is three times larger than the range achievable by modulation of other engine actuators such as the exhaust gas recirculation valve or the variable geometry turbocharger. Traditional empirical or regression-based models for volumetric efficiency, while suitable for conventional valve trains, are therefore challenged by flexible valve trains. The added complexity and additional empirical data needed for wide valve timing ranges limit the usefulness of these methods. A simple physically based volumetric efficiency model was developed to address these challenges. The model captures the major physical processes occurring over the intake stroke, and is applicable to both conventional and flexible intake valve trains. The model inputs include temperature and pressure in both the intake and exhaust manifolds, intake and exhaust valve event timings, engine cylinder bore, stroke, connecting rod lengths, engine speed, and effective compression ratio. The model is physically based, requires no regression tuning parameters, is generalizable to other engine platforms, and has been experimentally validated using an advanced multi-cylinder diesel engine equipped with a fully flexible variable intake valve actuation system. Experimental data were collected over a wide range of the operating space of the engine and augmented with air handling actuator and intake valve timing sweeps to maximize the range of conditions used to thoroughly experimentally validate the model for a total of 286 operating conditions. The physically based volumetric efficiency model will be shown to predict the experimentally calculated volumetric efficiency to within 5 percent for all cases with a root mean square error of less than 2.5 per cent for the entire dataset. The physical model developed differs from previous physical modelling work through the novel application of effective compression ratio, incorporation of no tuning parameters, and extensive validation on a unique engine test bed with fully flexible intake valve actuation.
机译:采用灵活的气门机构的先进柴油发动机架构可减少排放并提高燃油经济性。气门机构的灵活性允许发动机设计者以类似于共轨燃油喷射系统如何实现燃油喷射过程优化的方式来优化气体交换过程。调节气门正时直接影响发动机的容积效率,因为它直接控制汽缸中捕获了多少质量。实际上,将表明,气门正时调节对容积效率的控制权,即由于气门正时的调节而可达到的容积效率的范围,是通过调节其他发动机致动器可达到的范围的三倍。例如排气再循环阀或可变几何涡轮增压器。因此,尽管适用于常规气门机构,但传统的基于经验或基于回归的容积效率模型却受到柔性气门机构的挑战。较大的气门正时范围所需要的增加的复杂性和其他经验数据限制了这些方法的实用性。开发了一个简单的基于物理的容积效率模型来应对这些挑战。该模型捕获了进气冲程中发生的主要物理过程,适用于常规进气门和柔性进气门机构。模型输入包括进气和排气歧管中的温度和压力,进气和排气门事件正时,发动机气缸孔,冲程,连杆长度,发动机速度和有效压缩比。该模型是基于物理的,不需要回归调整参数,可推广到其他发动机平台,并且已使用装备有完全可变的可变进气门致动系统的先进多缸柴油发动机进行了实验验证。在广泛的发动机工作空间范围内收集了实验数据,并增加了空气处理致动器和进气门正时扫描,以最大化条件范围,从而可以通过实验对模型进行全面验证,共286个工作条件。将显示基于物理的容积效率模型,该模型可预测所有情况下通过实验计算得出的容积效率在5%以内,而整个数据集的均方根误差均小于2.5%。开发的物理模型与以前的物理模型工作不同,其有效压缩比的新颖应用,无调整参数的结合以及在具有完全灵活的进气门致动的独特发动机测试床上的广泛验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号