首页> 外文学位 >Turbocharger map reduction and estimation of effective compression ratio in a modern diesel engine utilizing flexible intake valve actuation.
【24h】

Turbocharger map reduction and estimation of effective compression ratio in a modern diesel engine utilizing flexible intake valve actuation.

机译:利用灵活的进气门致动,现代柴油机中的涡轮增压器图减小和有效压缩比的估算。

获取原文
获取原文并翻译 | 示例

摘要

The gas exchange and combustion processes in a modern diesel engine are dynamically linked --- outputs of the combustion process (exhaust temperature, exhaust pressure and exhaust enthalpy) directly affect inputs to the air handling system. Likewise, the gas exchange process directly influences the inputs to the combustion process, including the in-cylinder trapped mass or charge mass, charge temperature and pressure. In modern diesel engines, this complex dynamic interaction is influenced by conventional actuators like variable-geometry turbochargers and exhaust gas recirculation valves. In newer architectures, this relationship is further influenced by flexibility in the valve train, and modulation of valve opening and closing times greatly impacts mass flows through the engine.;Two major drivers of the gas exchange process are the turbocharger and the engine's effective compression ratio. The turbocharger, driven by exhaust gas energy from the combustion process, drives compressed fresh air into the intake manifold, as well as determines how much exhaust gas is recirculated through the engine. The effective compression ratio is a measure of the effective in-cylinder piston motion- and momentum-induced compression of the trapped gases, and is directly impacted by modulation of intake valve closing time. Modeling and control of the gas exchange process, as well as the impact effective compression ratio has on it, is essential for the promotion and control of advanced mode combustion techniques aimed at reducing emissions while maintaining efficiency. To date, gas exchange and turbocharger modeling efforts largely make use of complex stand-alone packages or depend upon interpolation from empirically-derived look-up tables. Accurate estimation and control techniques often require use of expensive sensors that may not be commonplace in production engines. The most common method of determining effective compression ratio relies heavily on the availability of accurate in-cylinder pressure measurements, which is rare in production engines.;One of the main contributions in the work presented here outlines a strategy for modeling the complex turbocharger system using analytical equations, rather than performance maps, and implements the resulting equations in a control-oriented gas exchange model. The gas exchange model is tested against experimental engine data, first using the traditional turbocharger performance maps, then using the developed analytical equations. The model results when using the analytical functions show good agreement with the experimental engine data.;The gas exchange model is then leveraged to develop an estimation scheme for effective compression ratio. Rather than rely on lab-grade in-cylinder pressure measurements, this work details an estimation scheme based only on knowledge available from typical production-viable on-engine sensors. This estimation scheme is based on a high-gain observer design for a first order system, and leverages a previously validated physically-based volumetric efficiency model to determine effective compression ratio. The effective compression ratio estimation scheme is validated against experimental engine data, with steady-state errors less than 3%. Additionally, the estimator is shown to be robust to 10% uncertainty in exhaust gas recirculation flow measurements, while still converging to within one half a compression ratio in well under 4 engine cycles. This estimation scheme is applicable to engines with flexible intake valve actuation, and is an essential control input for advanced-mode combustion techniques aimed at reducing emissions while maintaining or increasing engine efficiency.
机译:现代柴油机中的气体交换和燃烧过程是动态链接的-燃烧过程的输出(排气温度,排气压力和排气焓)直接影响到空气处理系统的输入。同样,气体交换过程直接影响燃烧过程的输入,包括缸内捕获质量或进气质量,进气温度和压力。在现代柴油发动机中,这种复杂的动态相互作用受到诸如可变几何涡轮增压器和废气再循环阀之类的传统执行器的影响。在较新的体系结构中,这种关系还受到气门机构灵活性的影响,并且气门打开和关闭时间的调节会极大地影响通过发动机的质量流量。气体交换过程的两个主要驱动因素是涡轮增压器和发动机的有效压缩比。涡轮增压器由燃烧过程中的废气能量驱动,将压缩的新鲜空气驱动到进气歧管中,并确定有多少废气通过发动机再循环。有效压缩比是缸内活塞运动和动量引起的有效捕集气体压缩的量度,并且直接受到进气门关闭时间的调节的影响。气体交换过程的建模和控制,以及有效压缩比对其的影响,对于促进和控制旨在减少排放并保持效率的先进模式燃烧技术至关重要。迄今为止,气体交换和涡轮增压器建模工作主要使用复杂的独立程序包,或依赖于根据经验得出的查找表进行插值。准确的估算和控制技术通常需要使用昂贵的传感器,这在生产引擎中可能并不常见。确定有效压缩比的最常用方法在很大程度上依赖于精确的缸内压力测量结果,这在生产发动机中很少见。此处提出的工作的主要贡献之一是概述了一种使用复杂的涡轮增压器系统建模的策略分析方程,而不是性能图,并在面向控制的气体交换模型中实现所得方程。首先,使用传统的涡轮增压器性能图,然后使用开发的解析方程,根据实验发动机数据测试气体交换模型。使用解析函数时的模型结果与发动机实验数据具有很好的一致性。;然后利用气体交换模型来开发有效压缩比的估计方案。这项工作不依赖于实验室级的缸内压力测量,而仅根据典型的可行的发动机上传感器提供的知识来详细描述估算方案。该估计方案基于一阶系统的高增益观察器设计,并且利用先前验证的基于物理的体积效率模型来确定有效压缩率。有效压缩比估计方案已针对实验发动机数据进行了验证,稳态误差小于3%。此外,在排气再循环流量测量中,该估算器显示出对10%不确定性的鲁棒性,同时在4个发动机循环内,仍可收敛至压缩比的一半以内。该估算方案适用于具有灵活进气门致动的发动机,并且是先进模式燃烧技术的基本控制输入,旨在减少排放,同时保持或提高发动机效率。

著录项

  • 作者

    Stricker, Karla C.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号