首页> 外国专利> METHOD AND SYSTEMS FOR PREDICTING OPTICAL PROPERTIES OF A SAMPLE USING DIFFUSE REFLECTANCE SPECTROSCOPY

METHOD AND SYSTEMS FOR PREDICTING OPTICAL PROPERTIES OF A SAMPLE USING DIFFUSE REFLECTANCE SPECTROSCOPY

机译:使用漫反射光谱预测样品的光学性质的方法和系统

摘要

A method and system for predicting optical properties of a sample using DRS (Diffuse Reflectance Spectroscopy) are presented. Embodiments include obtaining a plurality of diffuse reflectance values based on diffusely reflected optical energy obtained from a detector that increases source detector separations, wherein the optical energy is irradiated to the sample and diffusely reflected within the sample. can An embodiment includes providing diffuse reflectance values to a hybrid deep neural network architecture (HDNNA), wherein the HDNNA includes a Fully Connected sub-network and a Convolutional sub-network, a merged neural network and It contains an output neural network. HDNNA can predict the optical properties of a sample by using the diffuse reflectance of the sample. It involves providing diffuse reflectance values to fully connected subnetworks and convolutional subnetworks. In this case, the convolutional subnetwork may be a 1D-CNN (One Dimensional Convolutional Neural Network). A fully connected subnetwork can interpret diffuse reflectance values as feature vectors. 1D-CNN can interpret diffuse reflectance values as tensors. A fully connected subnetwork consists of a plurality of neural network layers, and nonlinear mapping may be performed on each layer to generate an output value from an input value. 1D-CNN captures shape properties of diffuse reflectance values, where the relationship between different diffuse reflectance values can be derived using shape properties. The shape properties can be mapped to the optical properties of the sample. Intermediate features generated as outputs by fully connected and convolutional subnetworks can be merged using merge neural networks, which can then be non-linearly mapped to generate intermediate features. Intermediate features generated as outputs by the merge neural network can be input to the output neural network. The output value of the output neural network may be regarded as a predicted value for the optical properties of the sample. It may include training a hybrid deep neural network architecture (HDNNA). During the training phase, a reference value of the diffuse reflectance may be determined by specifying a range of reference values of the optical property. The reference value of the diffuse reflectance may be determined according to a specified reference value of the optical characteristic. Embodiments may include predicting optical properties of a sample during a training phase of a hybrid deep neural network architecture based on a reference diffuse reflectance value. The predicted value of the optical characteristic may be compared with a reference value of the optical characteristic. An embodiment may include minimizing a difference (error) between a predicted value of the optical characteristic and a reference value of the optical characteristic by using back propagation. and providing a mean square weighted error cost function to minimize an error between a predicted value of the optical property and a reference value of the optical property. Minimizing the cost function can improve the accuracy of hybrid deep neural network architectures to predict optical property values. The cost function may include a weighting factor assigned to the optical characteristic based on a reference value range of the optical characteristic. In this case, the range can mean the difference between the maximum reference value and the minimum reference value of an optical property, and the weighting factor allows equal weights for error backpropagation of different optical properties, so the reference of the optical property through optimal update of the parameter It is possible to accurately predict the optical properties of a sample regardless of the range of values. Once the hybrid deep neural network architecture is trained, it can be used to predict the optical properties of the sample after determining the diffuse reflectance values using source detector separation. These and other aspects of the embodiments herein will be better understood and understood when considered in conjunction with the following description and accompanying drawings. It is to be understood, however, that the following description is presented by way of illustration and not limitation, while showing examples and numerous specific details thereof. Many changes and modifications can be made within the scope of the embodiments of the present specification without departing from the spirit of the present invention, and the embodiments of the present specification include all such modifications.
机译:提出了一种使用DRS(漫反射光谱)来预测样品的光学性质的方法和系统。实施例包括基于从源检测器获得的漫反射光能获得多个漫反射率值,该漫反射光能增加源检测器分离,其中光学能量被照射到样品并漫射在样品内。该实施例可以包括向混合深神经网络架构(HDNNA)提供漫反射值,其中HDNA包括完全连接的子网和卷积子网,合并的神经网络,并且它包含输出神经网络。通过使用样品的漫反射率,HDNNA可以预测样品的光学性质。它涉及将漫反射值提供给完全连接的子网和卷积子网。在这种情况下,卷积子网可以是1D-CNN(一维卷积神经网络)。完全连接的子网可以将漫反射率值解释为特征向量。 1D-CNN可以将漫反射率值解释为张量。完全连接的子网由多个神经网络层组成,并且可以在每个层上执行非线性映射以从输入值生成输出值。 1D-CNN捕获漫反射率值的形状特性,其中可以使用形状属性导出不同漫反射率值之间的关系。形状特性可以映射到样品的光学性质。通过完全连接和卷积子网产生的输出产生的中间特征可以使用合并神经网络合并,然后可以非线性地映射以生成中间特征。由合并神经网络作为输出产生的中间特征可以输入输出神经网络。输出神经网络的输出值可以被视为样本的光学特性的预测值。它可能包括培训混合深度神经网络架构(HDNNA)。在训练阶段期间,可以通过指定光学特性的参考值范围来确定漫反射率的参考值。可以根据光学特性的指定参考值来确定漫反射率的参考值。实施例可以包括基于参考漫反射率值在混合深神经网络架构的训练阶段期间预测样本的光学性质。可以将光学特性的预测值与光学特性的参考值进行比较。一个实施例可以包括通过使用反向传播最小化光学特性的预测值和光学特性的参考值之间的差值(误差)。提供均方加权误差成本函数,以最小化光学属性的预测值与光学特性的参考值之间的误差。最小化成本函数可以提高混合深神经网络架构的准确性来预测光学特性值。成本函数可以包括基于光学特性的参考值范围分配给光学特性的加权因子。在这种情况下,该范围可以意味着光学属性的最大参考值和最小参考值之间的差异,并且加权因子允许相同的权重用于不同光学属性的错误反向化,因此通过最佳更新引用光学性质的参考该参数可以确定,无论值范围如何,都可以精确地预测样品的光学性质。一旦训练了混合的深神经网络架构,它就可以使用在使用源检测器分离确定漫反射率值之后预测样品的光学性质。当考虑结合以下描述和附图时,将更好地理解和理解本文的这些和其他方面。然而,应该理解,以下描述通过说明而非限制来呈现,同时示出其示例和许多具体细节。在不脱离本发明的精神的情况下,可以在本说明书的实施例的范围内进行许多改变和修改,并且本说明书的实施例包括所有这些修改。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号