首页> 外国专利> Improvements in or relating to cyclic process for separating ammonia and hydrogen chloride from ammonium chloride

Improvements in or relating to cyclic process for separating ammonia and hydrogen chloride from ammonium chloride

机译:从氯化铵中分离氨和氯化氢的循环工艺的改进或与之相关的改进

摘要

Ammonia and hydrogen chloride are separated in a cyclic process from ammonium chloride by mixing the ammonium chloride with a melt of an alkali metal or ammonium bisulphate in an amount providing 0.15-0.75 mole of NH4C1 per mole of bisulphate, circulating the NH4C1-containing melt from the mixing zone through successive hydrogen chloride and ammonia stripping zones, maintaining a temperature of 220-270 DEG C. in the HC1 stripping zone, separately removing a vapour stream and partially stripped melt therefrom, maintaining a temperature of 330-380 DEG C. in the NH3 stripping zone, separately removing a vapour stream and stripped melt therefrom, returning the stripped melt to the mixing zone, and recovering HC1 and NH3 from the vapour streams removed from the respective stripping zones. The heat may be supplied by heating the melt or preferably, by direct transfer from preheated inert thermally stable fluids, such as steam, nitrogen, or vaporized organic liquids, e.g. benzene or chlorinated aromatics, such as chlorobenzene, orthodichlorobenzene, mixed isomeric trichlorobenzenes, or chlorinated diphenyls. The bisulphate may be sodium bisulphate, or mixtures of 50-75 per cent. thereof with ammonium bisulphate, or mixtures including potassium or lithium bisulphate, or three component mixtures. The ammonium chloride may be added as solid, or as a slurry in the organic heat transfer liquid. In Fig. 1, NH4C1 is added to the bisulphate melt in mix tank 10 and the melt flows to HC1 stripping tower 13 and therethrough countercurrent to gas or vapour, preheated in heater 23, injected through 24. HC1 is recovered from the vapour passing out at 25. The PICT:0716754/III/1 PICT:0716754/III/2 partly stripped melt is withdrawn at 14 to blow case 15, whence, by means of gas or vapour entering at 18, it is elevated to top of NH3 stripping tower 17 down which it flows countercurrent to a portion of the gas or vapour from preheater 27, and thence through 28. NH3 is recovered from the vapours passing out of tower 17. The stripped melt is withdrawn at 19 to blow case 20, whence it is elevated to mix tank 10 by gas or vapour entering at 22. Some of the super heated gas or vapour may be passed to mix tank 10. In Fig. 2 (not shown) a single stripping tower is shown divided into upper and lower ceramic or refractory packed sections for HC1 and NH3 stripping respectively, wherein the upper section is atmospheric, while the lower section is under vacuum, or the upper section is under partial vacuum and the lower section under higher vacuum, and wherein the heat is supplied by withdrawing portions of the melt through coils in an external gas fired heater and returning them to different points in the lower section. In Fig. 3 (not shown) a packed stripping tower is divided into several sections by liquid seals and melt passes therethrough from the top, while steam is injected through a recycle gas heater into the bottom of the lower-most section, and the gas from the top of this section is passed through another recycle gas heater of the next section above and so on, each section being provided with a recycle gas heater. In Fig. 4 NH4C1 is mixed with hot organic heat transfer liquid from tank 312, which is water immiscible and has a boiling point above that of water but below the sublimation point of NH4C1, in tower 310. Moisture is flashed off with entraining organic liquid by distillation through cooler 318 to separator 319, whence separated organic liquid is returned to tower 310. The resultant dehydrated slurry containing say 20-25 per cent. NH4C1, is passed to mix tank 324 and mixed with bisulphate melt, which is passed as in figure 1 through HC1 and NH3 stripping towers 330, 336. Vapours of the organic liquid from tank 312, after passage through boiler 316 at say 260 DEG C. and superheater 326 at say 450-550 DEG C. are injected through lines 314, 328, 332, and 337 into tower 310, mixing tank 324 HC1 stripping tower 330, and ammonia stripping tower 336 respectively, and through lines 334 and another into vapour lifts 333 and 339 to raise the melt to the top of the ammonia stripping tower 336 and to the mix tank 324 respectively. The organic vapours are in sufficient quantity and at a sufficient temperature to maintain the desired stripping temperatures. The HC1 and NH3 are recovered from the vapours from the stripping towers by passage through primary and secondary condensing towers 340, 347, and 357, 362 respectively, which are each cooled by recirculation of condensed organic liquid, for example through pump 341 and cooler 342 in the case of tower 340. Excess organic liquid from the condensing towers is returned through a common pipe 344 to a filter 345 and thence to tank 312. Ammonia may be added to the recovered liquid at 334a to avoid presence of free HC1. The HC1 is passed finally through a sulphuric acid drier 352, and both HC1 and NH3 are passed through refrigerated coolers 353, 367 respectively to condense residual organic liquid, which is separated in separators 355, 368 and passes to return line 344, while anhydrous HC1 and NH3 are recovered at 356, 369 respectively. The refrigeration and drying steps may be replaced by use of active carbon or silica gel absorbent. Make-up bisulphate may be added as necessary, or H2SO4 may be added to the melt, if crude NH4C1 is used, which contains NaC1.
机译:通过将氯化铵与碱金属或硫酸氢铵的熔融液混合,以循环方式从氯化铵中分离出氨和氯化氢,其用量为每摩尔硫酸氢盐提供0.15-0.75摩尔的NH4Cl,使含NH4Cl的熔体从通过连续的氯化氢和氨汽提区的混合区,在HC1汽提区中将温度保持在220-270℃,分别除去蒸气流并从中部分汽提熔融物,将温度保持在330-380℃。 NH 3汽提区,分别除去蒸气流和汽提液,从汽提液返回混合区,并从各自汽提区除去的汽流中回收HCl和NH 3。可以通过加热熔体或优选通过从预热的惰性热稳定流体,例如蒸汽,氮气或汽化有机液体,例如蒸汽,直接转移来提供热量。苯或氯化芳烃,例如氯苯,邻二氯苯,混合异构三氯苯或氯化二苯。硫酸氢盐可以是硫酸氢钠或50-75%的混合物。其与硫酸氢铵,或包括硫酸氢钾或硫酸锂的混合物,或三组分混合物。氯化铵可以固体形式或以淤浆形式加入有机传热液体中。在图1中,将NH 4 Cl添加到混合罐10中的硫酸氢盐熔体中,并且该熔体流至HC1汽提塔13,并与在加热器23中预热并通过24注入的气体或蒸气逆流通过该流。从排出的蒸气中回收HC1。在25.将 部分剥离的熔体在14取出到吹塑箱15,然后借助进入18的气体或蒸气将其升高至NH3汽提塔17的顶部向下流动,与来自预热器27的一部分气体或蒸气逆流向下流动,然后穿过28。从塔17流出的蒸汽中回收NH3。汽提的熔体在19取出以吹塑在图20中,通过进入22的气体或蒸气将其升高到混合罐10。一些过热的气体或蒸气可以被传递到混合罐10。在图2(未示出)中,单个汽提塔被分成分别用于HC1和NH3汽提的上部和下部陶瓷或耐火填充段,其中向上每部分是大气,下部是在真空下,上部是在部分真空下,下部是在较高真空下,其中热量是通过在外部燃气加热器中通过盘管抽出部分熔体来提供的,并且将它们返回到下部的不同点。在图3(未示出)中,填充的汽提塔被液封分成几个部分,熔体从顶部通过,而蒸汽则通过循环气体加热器注入到最下部的底部,而气体从该部分的顶部开始,该气体从上面的下一个部分穿过另一个循环气体加热器,依此类推,每个部分都设有一个循环气体加热器。在图4中,将NH 4 Cl与来自罐312的热的有机传热液体混合,该液体与水不混溶并且沸点高于水但低于NH 4 Cl的升华点,在塔310中。水分被夹带的有机液体闪蒸掉。通过冷却器318蒸馏至分离器319,分离出的有机液体从那里返回塔310。所得到的脱水浆液含有约20-25%。 NH 4 Cl被送入混合槽324,并与硫酸氢盐熔体混合,如图1所示,其通过HCl和NH 3汽提塔330、336。在例如260℃下通过锅炉316后,来自槽312的有机液体蒸气。通过管线314、328、332和337将温度为450-550℃的水和过热器326分别注入塔310,混合罐324 HCl汽提塔330和氨汽提塔336,并通过管线334和另一管线注入蒸气提升装置333和339将熔体分别提升到氨汽提塔336的顶部和混合罐324。有机蒸气的量和温度足以维持所需的汽提温度。通过分别通过一级和二级冷凝塔340、347和357、362从汽提塔的蒸气中回收HCl和NH3,它们分别通过冷凝的有机液体的再循环而冷却,例如通过泵341和冷却器342。在塔340的情况下,来自冷凝塔的过量有机液体通过公共管道344返回到过滤器345,并由此返回到罐312。可以在334a将氨添加到回收的液体中,以避免游离HCl的存在。最终使HC1通过硫酸干燥器352,并且使HC1和NH3两者都通过冷藏冷却器353。分别在分离器355、368中分离出的有机溶剂冷凝为残留的有机液体,该有机液体在分离器355、368中分离并进入返回管线344,而无水HCl和NH3分别在356、369中回收。可以通过使用活性炭或硅胶吸收剂来代替制冷和干燥步骤。如果使用的是含有NaCl的粗NH4Cl,则可以根据需要添加补充硫酸氢盐,或可以将H2SO4添加到熔体中。

著录项

  • 公开/公告号GB716754A

    专利类型

  • 公开/公告日1954-10-13

    原文格式PDF

  • 申请/专利权人 MATHIESON CHEMICAL CORPORATION;

    申请/专利号GB19520020567

  • 发明设计人

    申请日1952-08-15

  • 分类号C01B7/05;

  • 国家 GB

  • 入库时间 2022-08-23 23:46:28

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号