首页> 外国专利> Improvements in control systems for axial flow compressors particularly adapted for use in gas turbine engines

Improvements in control systems for axial flow compressors particularly adapted for use in gas turbine engines

机译:轴流压缩机控制系统的改进,特别适用于燃气涡轮发动机

摘要

1,184,369. Axial flow compressors; gas turbine jet propulsion engines. GENERAL ELECTRIC CO. Sept.19, 1967 [Dec. 22,19661, No. 42616/67. Headings F1C, F1G and F1J. [Also in Division G1] In a gas turbine engine, the engine is controlled in dependance on the Mach number of the gas discharged from its compressor to ensure that the compressor does not stall. In one embodiment of a simple gas turbine engine, Fig. 2, a metering valve 212 controlling the rate of flow of fuel to the combustion chamber 204 and therefore the speed of the rotor of the engine, is primarily controlled by a lever 220 operated by the pilot. The position of the lever is transduced at 222 and converted in signal generator 223 in dependence on the inlet air temperature measured by the sensor 226, to a signal indicative of the required speed. This signal is compared at 228 with a signal indicative of the actual speed, sensed by transducer 230, and the error signal fed via selectors 232, 234, switch 236, and an integrator 238 to a torque motor 218 mechanically connected to the valve 212. An anti-hunting signal is provided by generator 245, and combined with the input to the integrator 238. To prevent the compressor stalling, a signal representative of the Mach number of the gas discharged from the compressor is computed in generator 250 from pressure sensors 246, 248 outputs and compared with signals indicative of the acceleration and deceleration limit. Mach numbers computed in generators 256, 258 from measurements of the rotor speed and inlet gas temperatures. If the actual Mach number exceeds the deceleration limit Mach number or is lower than the acceleration limit Mach number, the corresponding error signal is passed by the corresponding selector 234, or 232, rather than the speed error signal, and is used to control the torque motor 218. A signal representative of the rate of change of Mach number provided by generator 264 is combined with the error signal representative of the difference between the actual and acceleration limit Mach number as a further stall prevention means for rapid acceleration. During starting up of the engine, the Mach number is no longer a valid control parameter for fuel flow. The control is therefore provided by the output from a generator 266, as determined by the rotor speed and inlet temperature. During this period the selectors and associated circuitry are disconnected from the motor 218 by energization of relay 268 the relay being energized by the output from transducer 230, via cut-off 270, arranged to de-energize relay 268 when the speed of the rotor reaches idling speed. In a second embodiment, Fig. 1, of a turbofan engine having an afterburner 40 and a variable nozzle 32, the supply of fuel to the afterburner and the area of the nozzle are determined primarily by movement of a throttle lever 86 by the pilot. The supply to the burners 40 is controlled by a metering valve 72 comprising two movable parts 81, 83, the former moved mechanically in dependence on the outlet pressure of the compressor 18 and the latter by motor 100, energized by movement of the throttle lever 86 past position y. The input to the motor is an error signal indicative of the difference between the required thrust of the engine computed by generators 88, 90, 92 in dependance on the input temperature of the compressor, detected by sensor 52, and the actual position of the valve part, detected by generator 101. The nozzle area is altered by actuators 38 under the control of, a valve 62 moved by motor 60 whose input represents the difference between the actual Mach number of the gas in the compressor, determined by probes 44, 46 and generator 42 and the required Mach number, generated in generator 50 and dependant on the inlet temperature. An anti-hunting signal representing the rate of change of the nozzle area is developed at 69 and combined with the input signal to the motor 60. When the engine is operating in its "dry" condition, with no afterburner operating, the lever 86 being positioned between x and y, the position of the lever is converted into a required nozzle area signal by generator 104, and the motor 60 is controlled by a signal indicative of the difference between the requested nozzle area and the actual nozzle area transduced by generator 68. Also, motor 100 is connected to generator 108 whose output is such that the valve part 83 is maintained in its minimum flow position, and the fuel supply valve 80 is maintained closed. As the lever passes position y indicating that the afterburner is required, the nozzle area comes under the control of the Mach number signal generator. Relay 120 is energized, provided that the turbine rotor speed, measured by generator 116, exceeds a predetermined minimum value pre-set by diode 118, to open valve 80. The fuel is then ignited by means 112 and its ignition sensed by light detector 122. When this occurs the output from circuit 110 energizes relay 124 dis-connecting the motor 100 from generator 108 so that it is again under the control of throttle lever 86. To guard against stalling of the compressor the error signal supplied to motor 60 is compared with a maximum permissible Mach number error signal generated in 128 and the difference used to modify the input to the motor 100 if it exceeds a value set by diode 130. If the nozzle area control mechanism fails and the nozzle does not open sufficiently on ignition of the afterburner, when ignition is detected a minimum nozzle area signal generator 132 produces an output which is compared with the actual nozzle area. If the latter is sufficiently small, indicating that the nozzle has not opened appreciably, a signal is transmitted through diode 136 to a time delay circuit 137 whose output energizes relay 140 dis-connecting the motor 100 from control by the throttle lever and connecting it to the generator 108 so that the valve part is returned to its minimum flow condition. Alternatively the output to the relay could be used to energize relay 124.
机译:1,184,369。轴流压缩机燃气涡轮喷气发动机。通用电气公司,1967年9月19日[十二月22,19661,编号42616/67。标题F1C,F1G和F1J。 [也在G1区中]在燃气涡轮发动机中,根据从其压缩机排出的气体的马赫数来控制发动机,以确保压缩机不会失速。在图2的简单燃气涡轮发动机的一个实施例中,控制燃料流向燃烧室204的流率并因此控制发动机转子的速度的计量阀212主要由操纵杆220控制,该操纵杆由操纵杆220控制。飞行员。杠杆的位置在222处被转换,并根据由传感器226测量的进气温度在信号发生器223中被转换成指示所需速度的信号。在228将该信号与由换能器230感测的表示实际速度的信号以及通过选择器232、234,开关236和积分器238馈送到机械连接到阀212的扭矩电动机218的误差信号进行比较。发生器245提供一个抗寻迹信号,并与积分器238的输入相结合。为防止压缩机失速,在发生器250中从压力传感器246计算出代表从压缩机排出的气体的马赫数的信号。 248输出并与表示加速和减速极限的信号比较。在发电机256、258中根据转子速度和进气温度的测量值计算出马赫数。如果实际马赫数超过减速极限马赫数或低于加速极限马赫数,则相应的误差信号将由相应的选择器234或232传递,而不是由速度误差信号传递,并用于控制转矩代表发电机264提供的马赫数的变化率的信号与代表实际极限马赫数与加速度极限马赫数之间的差的误差信号组合在一起,作为用于快速加速的另一种防止失速的装置。在发动机启动期间,马赫数不再是燃油流量的有效控制参数。因此,该控制由发电机266的输出来提供,该发电机266的输出由转子速度和入口温度确定。在此期间,通过继电器268的通电,选择器和相关的电路与电动机218断开连接,该继电器由传感器230的输出经由截止270被激励,该继电器被安排为当转子的转速达到零时使继电器268断电。空转速度。在图1的第二实施例中,在具有加力燃烧器40和可变喷嘴32的涡轮风扇发动机中,对加力燃烧器的燃料供应和喷嘴的面积主要由飞行员的节气门杆86的移动来确定。燃烧器40的供应由包括两个可移动部分81、83的计量阀72控制,前者根据压缩机18的出口压力机械地移动,后者由电动机100通过节气门杆86的运动来提供动力。过去的位置y。电动机的输入是误差信号,该误差信号表示由发电机88、90、92根据由传感器52检测到的压缩机的输入温度,由发电机88、90、92计算出的发动机所需推力之间的差与阀的实际位置之间的差。部分由发生器101检测。在由马达60移动的阀62的控制下,致动器38改变喷嘴面积,该阀62的输入表示由探测器44、46确定的压缩机中气体的实际马赫数之间的差。发生器42和所需的马赫数在发生器50中产生,并取决于入口温度。在69处产生表示喷嘴面积的变化率的反狩猎信号,并与电动机60的输入信号相结合。当发动机在其“干燥”状态下运转,而没有加力燃烧器运转时,操纵杆86定位在x和y之间,控制杆的位置由发生器104转换成所需的喷嘴面积信号,并且电动机60由表示请求的喷嘴面积和由发生器68转换的实际喷嘴面积之差的信号控制。而且,电动机100连接到发电机108,发电机108的输出使得阀部分83保持在其最小流动位置,并且燃料供应阀80保持关闭。当控制杆经过指示需要加力燃烧室的位置y时,喷嘴面积受马赫数信号发生器的控制。继电器120通电,条件是发电机116测量的涡轮转子转速超过二极管118预先设定的预定最小值,以打开阀80。然后通过装置112点燃燃料,并通过光检测器122感测燃料的点燃。当发生这种情况时,电路110的输出激励继电器124,断开电动机100与发电机108的连接,使其再次位于发电机100的下方。控制油门杆86。为防止压缩机失速,将提供给电动机60的误差信号与在128中生成的最大允许马赫数误差信号进行比较,如果该误差值超过某个值,则该差用于修改电动机100的输入如果喷嘴面积控制机构出故障并且在加力燃烧器点火时喷嘴不能充分打开,则当检测到点火时,最小喷嘴面积信号发生器132产生输出,该输出与实际喷嘴面积进行比较。如果后者足够小,表示喷嘴尚未明显打开,则信号通过二极管136传输到延时电路137,延时电路137的输出为继电器140供电,从而使电机100脱离节流杆的控制,并将其连接到发生器108使阀部分返回其最小流量状态。备选地,到继电器的输出可以用于使继电器124通电。

著录项

  • 公开/公告号GB1184369A

    专利类型

  • 公开/公告日1970-03-18

    原文格式PDF

  • 申请/专利权人 GENERAL ELECTRIC COMPANY;

    申请/专利号GB19670042616

  • 发明设计人

    申请日1967-09-19

  • 分类号F02C9/44;F04D27/02;

  • 国家 GB

  • 入库时间 2022-08-23 10:33:55

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号