首页> 外国专利> Process for manufacturing carbonyl compounds by oxidation with molecular oxygen of olefinic compounds in liquid phase in the presence of soluble bimetallic catalysts

Process for manufacturing carbonyl compounds by oxidation with molecular oxygen of olefinic compounds in liquid phase in the presence of soluble bimetallic catalysts

机译:在可溶性双金属催化剂存在下,通过在液相中用烯烃化合物的分子氧氧化制备羰基化合物的方法

摘要

Carbonyl compounds are manufactured by oxidation of olefines with molecular oxygen in the presence of a catalytic system comprising both a specific rhodium compound and a specific compound of a metal selected from iron, cobalt, nickel and copper. The reaction is conducted in a substantially anhydrous organic solvent selected from alcohols, polyols and glycol monoethers.PPThe present invention concerns a process for manufacturing carbonyl compounds, particularly methyl ketones, in the liquid phase, by the catalytic oxidation of olefins with molecular oxygen, in a substantially anhydrous medium and in the presence of soluble bimetallic catalysts.PPIn the processes of the Wacker type for converting olefins to ketones (U.S. Pat. No. 3,080,425), the catalysts are, for example, palladium chloride or rhodium oxyhydrate associated with copper chloride or iron sulfate; these processes are operated in the aqueous phase and water is the oxidizing agent for the reaction.PPAccording to the French Pat. No. 1,210,009, rhodium, iridium or palladium chloride associated with copper chloride is also used as catalyst for oxidizing olefins in the aqueous phase, and water is the oxidizing agent.PPAccording to the two above patents, it is essential to operate in a strongly acidic medium (concentrated acids are employed).PPOther patents also utilize the presence of water to carry out reactions of the same kind in an organic solvent with palladium catalysts of the same type: French Pat. Nos. 1,564,635 and 1,395,129; U.S. Pat. No. 3,370,073. PP The process according to the invention is performed essentially in the liquid phase, in a water-free solvent, in the presence of a rhodium catalyst, the other noble metals of the VIIIth group being excluded. Thus, by using rhodium instead of palladium, a metal commonly used in liquid phase, processes far higher selectivities are obtained, particularly when converting terminal olefins to methylketones, as well as far higher reaction rates.PP According to the process of the invention, the catalyst comprises both at least one organometallic salt or complex A! and at least one organometallic salt or compound B!, of the general formulas: ##EQU1##P PIn the salt of complex A!, M. sub.1 is rhodium.PPX is an anionic group, preferably halogen (usually chlorine of fluorine), a carboxylate, a sulfate, a nitrate, a perchlorate, a thiocyanate, a tetrafluoroborate, an acetyl acetonate or a cyclopentadienyl.PPN IS A INTEGER SELECTED FROM 1, 2 AND 3.PPL is a coordinate, preferably a water molecule or an organic compound selected preferably from the olefins, diolefins, phosphines, dimethylsulfoxide and an acetylacetonate group. PPM IS AN INTEGER FROM 1 TO 3.PP Non- limitative examples of rhodium complexes are:PP RHODIUM FLUORIDE, RhF.sub.3, 3H.sub.2 OPPrhodium chloride, RhCl. sub.3, 3H.sub.2 OPPrhodium bromide, RhBr.sub.3, 2H. sub.2 0 ##EQU2## where X is chlorine or bromine and olefin is ethylene, propylene, tetrafluorethylene or cyclooctene; for example RhCl (C.sub.2 H. sub.4).sub.2 !.sub.2 where C.sub.2 H.sub.4 is ethylene. ##EQU3## where X is chlorine or bromine, and polyolefin is 1,5-cyclooctadiene, 1,5- hexadiene, butadiene or cyclododecatriene, for example RhCl (C.sub.8 H. sub.12)!.sub.2 where C.sub.8 H.sub.12 is 1,5-cyclooctadiene. ##EQU4## where "acac" is an acetylacetonate group and olefin is ethylene or tetrafluorethylene.PPIn the salt or complex B! to be used with the complex A:PPM.sub.2 is a transition metal selected from iron, cobalt, nickel and copper,PPZ is an anionic group, preferably halogen, a carboxylate, a sulfate, a nitrate, a perchlorate or a tetrafluoroborate.PPp is an integer selected from 1, 2 and 3.PP L' is a coordinate, preferably a molecule of water or an organic molecule, for example dimethylformamide, hexamethylphosphoramide or dimethylsulfoxide.P Pq is 0 or an integer from 1 to 6.PP Non- limitative examples are:PPiron, cobalt, nickel and copper perchlorates and nitrates of the general formulas M.sub.2 (ClO.sub.4).sub. 2, 6H.sub.2 O and M.sub.2 (NO.sub.3).sub.2, 6H.sub.2 O.PP copper and iron halides of the formula M.sub.2 Z.sub.p, .sub.q H.sub.2 O with Z = fluorine, chlorine or bromine and M.sub.2 = iron or copper, p is 2 or 3 and q is 0 or an integer from 1 to 6.PPcomplexes such as: Cu (ClO.sub.4).sub.2, 4 L'; Fe (ClO.sub.4).sub.2, 4 L' or Cu (NO. sub.3).sub.2, 4 L', where L' is a coordinate such as dimethylformamide, hexamethylphosphoramide or dimethylsulfoxide; for example: ##EQU5##where HMPT is hexamethylphosphoramide.PPThis invention applies to branched or unbranched olefinic compounds having from 2 to 16 carbon atoms per molecule and whose general formula is R.sub.1 -- CH ═ CH -- R.sub.2 where R.sub.1 and R.sub.2 are identical or not and represent either hydrogen atoms or alkyl, aryl, alkylaryl or aralkyl radicals having 1 - 14 carbon atoms per molecule.P PAccording to the invention, there are preferably used primary terminal olefins of the above general formula where R.sub.1 = H and R.sub.2 = alkyl, aryl, alkylaryl or aralkyl; they contain 3 - 16 carbon atoms and yield methylketones selectively. They are thus of the formula CH.sub.2 ═ CH -- R.sub.2. From ethylene, there is obtained ethanal.PP Non-limitative examples are ethylene, propylene, 1-butene, 1-pentene, 1- hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1- pentene, 3,3-dimethyl-1-butene, 5-methyl-1-hexene and styrene.P PThe primary terminal olefins may be used in a pure state or diluted with other inert or olefinic hydrocarbons. Thus oxidizing partially hydrogenated steam cracking C.sub.4 cuts containing a mixture of olefins such as 1-butene and cis and trans 2-butenes and butane leads selectively to the formation of methylethyl ketone obtained by oxidation of 1-butene, the other olefins being only slightly oxidized.P PThe oxidation reaction is conducted in liquid phase in an organic solvent; the catalyst in the form of its two constituents A! and B! being solubilized in the medium.PPThe solvent is an alcohol or a polyalcohol. It comprises preferably from 1 to 20 carbon atoms per molecule. The alcohol may be a primary, secondary or tertiary alcohol; the polyalcohol (or polyol) comprises at least 2 alcohol groups.P P Examples of solvents are: methanol, ethanol, n-propanol, isopropanol, 2-butanol, 3,3-dimethyl-2-butanol, cyclohexanol, methyl phenyl carbinol, ethylene glycol, 1,2-propane diol and glycerol.P POther useful solvents are the glycol monoethers (cellosolves) of the formula R -- O -- CH.sub.2 -- CH.sub.2 OH, particularly methylcellosolve of the formula CH.sub.3 -- O -- CH.sub.2 -- CH.sub.2 OH. PPThe alcoholic or polyalcoholic solvents yield better results than those obtained with other conventional solvents such as ketones, ethers and esters.PPIt is essential that the solvent be substantially anhydrous since, irrespective of the solvent, the reaction improves when the water concentration in the medium decreases. Water may be tolerated, however, at concentrations up to 1% b. w. in the solvent, and preferably not above 0.5%, whenever possible not above 0.2%. A dehydration agent may be added to the medium, if necessary, for example 2,2'-dimethoxypropane.PPThe temperature at which the reaction takes place is from about 0° C to about 150. degree. C, preferably from 30° C to 130° C.P P The oxidation gas may be pure oxygen or oxygen diluted with nitrogen or any inert gas.PPThe oxygen partial pressure is from 0. 1 to 25 bars.PPConversely to the prior art processes, it is conducted in substantially neutral medium (pH usually between about 6 and 8).PPIn the process according to the invention, the molar ratio B!/ A! is usefully from 0.5 to 10 and preferably from 1 to 4. PPThe molar ratio A!/olefine, in mole per liter, is usefully from 10.sup.-3 to 5 × 10.sup.-1, preferably from 5 × 10.sup.- 3 to 10.sup.-1.PPThe present invention is illustrated by the following examples:
机译:羰基化合物是在催化系统的存在下通过烯烃与分子氧的氧化而制得的,该催化系统同时包含特定的铑化合物和选自铁,钴,镍和铜的金属的特定化合物。该反应在选自醇,多元醇和二醇单醚的基本上无水的有机溶剂中进行。本发明涉及通过液相催化催化氧化羰基化合物制备羰基化合物,特别是甲基酮的方法。在基本上无水的介质中,在可溶性双金属催化剂存在下,具有分子氧的烯烃。在将烯烃转化为酮的Wacker型方法中(美国专利3,080,425),催化剂是:例如,与氯化铜或硫酸铁结合的氯化钯或羟基氧化铑;这些方法在水相中进行,水是反应的氧化剂。在US 1,210,009中,与氯化铜结合的氯化铑,铱或钯也用作在水相中氧化烯烃的催化剂,并且水是氧化剂。根据上述两个专利,这是必不可少的

其他专利也利用水的存在,在有机溶剂中与相同类型的钯催化剂进行相同类型的反应:French Pat 。 1,564,635和1,395,129;美国专利US 3,370,073。P

本发明的方法基本上在液相中,在无水溶剂中,在铑催化剂的存在下进行,排除了第VIII族的其他贵金属。因此,通过使用铑代替常用于液相的金属钯,可以获得更高的选择性,特别是当将末端烯烃转化为甲基酮时,以及更高的反应速率。

根据本发明的催化剂,催化剂包含至少一种有机金属盐或配合物A 1。和至少一种通式的有机金属盐或化合物B !:在配合物A!的盐中,M。sub.1是铑。

X是阴离子基团,优选卤素(通常是氟的氯),羧酸根,硫酸根,硝酸根,高氯酸根,硫氰酸根,四氟硼酸根,乙酰丙酮根或环戊二烯基。从1、2和3开始。P L为配位基,优选为水分子或有机化合物,其优选选自烯烃,二烯烃,膦,二甲基亚砜和乙酰丙酮酸酯基团。 1至3的整数。氯化物,RhCl。 sub.3,3H.sub.2 O P溴化铑,RhBr.sub.3,2H。 sub.2 0 ## EQU2 ##其中X是氯或溴,烯烃是乙烯,丙烯,四氟乙烯或环辛烯;例如RhCl(C 2 H.sub.4).sub.2,其中C 2 H.sub.4是乙烯。其中X是氯或溴,而聚烯烃是1,5-环辛二烯,1,5-己二烯,丁二烯或环十二碳三烯,例如RhCl(C 8 H.sub.12)。 2,其中C 8 H 12是1,5-环辛二烯。在盐或络合物B中,其中“ acac”是乙酰丙酮根,烯烃是乙烯或四氟乙烯。与配合物A一起使用:P 2 P是选自铁,钴,镍和铜的过渡金属,P 2 Z是阴离子基团,优选卤素,羧酸根P是从1、2和3中选择的整数。L'是配位体,优选是水或氢的分子。有机分子,例如二甲基甲酰胺,六甲基磷酰胺或二甲基亚砜。

q为0或1至6的整数。

非限制性实例为:

铁,钴,通式M.sub.2(ClO.sub.4).sub的镍和高氯酸铜和硝酸盐。 2、6H 2 O和M 2(NO.sub.3)2、6H 2 O式M的卤化铜和卤化铁。 2 Z.sub.q H.sub.2 O,其中Z =氟,氯或溴,M.2 =铁或铜,p为2或3,q为0或1的整数至6.

络合物,例如:Cu(ClO.sub.4).sub.2,4 L'; Fe(ClO.sub.4)2,4 L'或Cu(NO。sub.3)2,4 L',其中L'是配位体,例如二甲基甲酰胺,六甲基磷酰胺或二甲基亚砜;例如:## EQU5 ##其中HMPT是六甲基磷酰胺。本发明适用于每个分子具有2至16个碳原子且通式为R1-CH的支链或直链烯烃化合物。 ═ CH-R.sub.2,其中R.sub.1和R.sub.2相同或不同,代表氢原子或烷基,芳基每个分子具有1-14个碳原子的烷基,芳基或芳烷基。根据本发明,优选使用具有上述通式的伯末端烯烃,其中R 1 = H和R 5。 2 =烷基,芳基,烷基芳基或芳烷基;它们含有3-16个碳原子,可以选择性地产生甲基酮。因此它们的分子式为CH.sub.2═ CH-R.sub.2。由乙烯获得乙醛。非限制性实例为乙烯,丙烯,1-丁烯,1-戊烯,1-己烯,1-庚烯,1-辛烯,1-壬烯,1-癸烯。 ,1-十二碳烯,4-甲基-1-戊烯,3,3-二甲基-1-丁烯,5-甲基-1-己烯和苯乙烯。

主要末端烯烃可以纯净状态使用或用其他惰性或烯属烃稀释。因此,氧化部分氢化的蒸汽裂解C.sub.4馏分,其中包含1-丁烯和顺式以及反2-丁烯和丁烷的烯烃混合物,丁烷选择性地导致通过氧化其他丁烯的1-丁烯而获得的甲乙酮

氧化反应在有机溶剂中在液相中进行;催化剂以其两种成分的形式存在!和B!

溶剂是醇或多元醇。每个分子优选包含1至20个碳原子。所述醇可以是伯,仲或叔醇;优选地,伯醇可以是醇。多元醇(或多元醇)包含至少2个醇基。溶剂的实例为:甲醇,乙醇,正丙醇,异丙醇,2-丁醇,3,3-二甲基-2-丁醇,环己醇,甲基苯基甲醇,乙二醇,1,2-丙二醇和甘油。其他有用的溶剂是式R-O-CH 2-CH的二醇单醚(溶纤剂)。 2 OH,特别是式CH 3-O-CH 2-CH 2 OH的甲基溶纤剂。

与其他常规溶剂(如酮,醚和酯)相比,含醇或多元醇的溶剂产生更好的结果。

由于与溶剂无关,该溶剂必须基本无水,这一点很重要。 ,当介质中的水浓度降低时,反应会改善。但是,水的浓度最高可以达到1%b。 w。在溶剂中,优选不超过0.5%,尽可能不超过0.2%。如果需要,可以将脱水剂添加到介质中,例如2,2'-二甲氧基丙烷。反应发生的温度为约0℃至约150℃。 C,优选30°C至130°C。

氧化气体可以是纯氧气或用氮气稀释的氧气或任何惰性气体。

氧气分压为0.1。与现有技术方法相反,它在基本上中性的介质(pH通常在约6至8之间)中进行。在本发明的方法中,摩尔比率B!/ A! A 1 /烯烃的摩尔比为0.5至10,优选为1至4。A 1 /烯烃的摩尔比为10升-3至5×10 -1有用。 ,优选5×10 -3至10.-1。

通过以下实施例说明本发明:

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号