首页> 外国专利> METODE DAN ALAT PEMBUATAN ELEKTRODA POSITIF DAN NEGATIF PENCEMARAN DIRI UNTUK SEL SURYA SILIKON DAN PERANTI LAINNYA

METODE DAN ALAT PEMBUATAN ELEKTRODA POSITIF DAN NEGATIF PENCEMARAN DIRI UNTUK SEL SURYA SILIKON DAN PERANTI LAINNYA

机译:用于自污染的正负电极的方法和设备

摘要

A self-doping electrode to silicon is formed primarily from a metal (major component) which forms a eutectic with silicon. A p-type dopant (for a positive electrode) or an n-type dopant (for a negative electrode) is alloyed with the major component. The alloy of major component and dopant is applied to a silicon substrate. Once applied, the alloy and substrate are heated to a temperature above the major component-silicon eutectic temperature such that the major component liquefies more than a eutectic proportion of the silicon substrate. The temperature is then decreased towards the eutectic temperature permitting molten silicon to reform through liquid-phase epitaxy and while so doing incorporate dopant atoms into its regrown lattice. Once the temperature drops below the major component-silicon eutectic temperature the silicon, which has not already regrown into the lattice, forms a solid-phase alloy with the major component and the remaining unused dopant. This alloy of major component, silicon and unused dopant is the final contact material. Alternatively, a self-doping electrode may be formed from an unalloyed metal applied to a silicon substrate. The metal and substrate are heated to a temperature above the metal-silicon eutectic temperature in an ambient gas into which a source of vaporized dopant atoms has been introduced. Dopant atoms in the ambient gas are absorbed by the molten mixture of metal-silicon to a much greater extent than they are absorbed by the solid silicon substrate surfaces. The temperature is then decreased to below the metal-silicon eutectic temperature. During this temperature decrease, the doped regrown silicon layer and the metal-silicon alloy final contact material are created in the same process as described above.
机译:硅的自掺杂电极主要由与硅形成共晶的金属(主要成分)形成。将p型掺杂剂(用于正极)或n型掺杂剂(用于负极)与主要成分合金化。将主要成分和掺杂剂的合金施加到硅衬底上。一旦施加,将合金和衬底加热到​​高于主要成分-硅共晶温度的温度,使得主要成分液化大于硅衬底的共晶比例。然后将温度降低至低共熔温度,从而使熔融硅通过液相外延重整,同时将掺杂原子掺入到其再生长的晶格中。一旦温度降到主要成分-硅共晶温度以下,尚未再长成晶格的硅就会与主要成分和剩余的未使用掺杂剂形成固相合金。这种主要成分的合金,硅和未使用的掺杂剂是最终的接触材料。替代地,自掺杂电极可以由施加到硅衬底上的非合金金属形成。在已引入汽化掺杂原子源的环境气体中,将金属和衬底加热到​​高于金属-硅共晶温度的温度。环境气体中的掺杂剂原子被熔融的金属硅混合物吸收的程度比它们被固体硅衬底表面吸收的程度大得多。然后将温度降低至金属-硅共晶温度以下。在该温度降低期间,以与上述相同的过程产生掺杂的再生长硅层和金属-硅合金最终接触材料。

著录项

  • 公开/公告号ID20372A

    专利类型

  • 公开/公告日1998-12-03

    原文格式PDF

  • 申请/专利权人 ABARA SOLAR INC;

    申请/专利号ID19980000655

  • 发明设计人 DANIEL I. MEIER;HUBERT P. DAVIS;

    申请日1998-05-04

  • 分类号H01L31/042;

  • 国家 ID

  • 入库时间 2022-08-22 02:25:55

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号