首页> 外国专利> COMPUTATIONAL METHOD FOR DESIGNING CHEMICAL STRUCTURES HAVING COMMON FUNCTIONAL CHARACTERISTICS

COMPUTATIONAL METHOD FOR DESIGNING CHEMICAL STRUCTURES HAVING COMMON FUNCTIONAL CHARACTERISTICS

机译:具有共同功能特性的化学结构设计的计算方法

摘要

1. A computer-based method of designing chemical structures having a preselected functional characteristic, comprising the steps of: (a) producing a physical model of a simulated receptor phenotype encoded in a linear charater sequence, and providing a set of target molecules sharing at least one quantifiable functional characteristic; (b) for each target molecule; (i) calculating an affinity between the receptor and the target molecule in each of a plurality of orientations using an effective affinity calculation; (ii) calculating a sum affinity by summing the calculated affinities; (iii) identifying a maximal affinity; (c) using the calculated sum and maximal affinities to: (i) calculate a maximal affinity correlation coefficient between the maximal affinities and the quantifiable functional characteristic; (ii) calculate a sum affinity correlation coefficient between the sum affinities and the quantifiable functional characteristic; (d) using the maximal correlation coefficient and sum correlation coefficient to calculate a fitness coefficient; (e) altering the structure of the receptor and repeating steps (b) through (d) until a population of receptors having a preselected fits coefficient are obtained; (f) providing a physical model of a chemical structure encoded in a molecular linear character sequence, calculating an affinity between the chemical structure and each receptor in a plurality of orientations using said effective affinity calculation, using the calculated affinities to calculate an affinity fitness score; (g) altering the chemical structure to produce a variant of the chemical structure and repeating step (f); and (h) retaining and further altering those variants of the chemical structure whose affinity score approaches a preselected affinity score. 2. The method according to claim 1 wherein the step of producing a simulated receptor genotype comprises generating a receptor linear character sequence which codes for spatial occupancy and charge, and wherein the step of producing a physical model of a chemical structure comprises generating said molecular linear character sequence which codes for spatial occupancy and charge. 3. The method according to claim 2 wherein said effective affinity calculation comprises two measures, the first being a proximity measure wherein the proportion of uncharged portions on said simulated receptors being sufficiently close to non-polar regions on said molecular structure to generate effective London dispersion forces is estimated, and the second being the summed strengths of charge-dipole electrostatic force interactions generated between charged portions of said simulated receptor and dipoles present in said molecular structure. 4. The method according to claim 2 wherein said step of calculating the affinity fitness score includes calculating a sum and maximal affinity between the molecular structure and each receptor, the fitness score being calculated as: Σ {(|calculated maximal affinity - target maximal affinity|/ target maximal affinity} and wherein said preselected fitness score is substantially zero. 5. The method according to claim 2 wherein said step of calculating the affinity fitness score includes calculating a sum and maximal affinity between the molecular structure and each receptor, the fitness score being calculated as: Σ {(|calculated maximal affinity-target maximal affinity|/ 2 x target maximal affinity) + (|calculated sum affinity target sum affinityl/2 x target sum affinity|)}, and wherein said preselected fitness score is substantially zero. 6. The method according to claim 2 wherein said sum affinity correlation coefficient is rSA2, said maximal affinity correlation coefficient is rMA2 , and wherein said fitness coefficient is F=(rMA2 x rSA2)0.5, and wherein said preselected fitness coefficient is substantially unity. 7. The method according to claim 2 wherein said sum affinity correlation coefficient is rSA-MA2, said maximal affinity correlation coefficient is rMA2, and wherein said fitness coefficient is F=(rMA2 x (1-rSA-MA2))0.5 and wherein said preselected fitness coefficient is substantially unity. 8. The method according to claim 2 wherein said molecular linear character sequences comprise a plurality of sequential character triplets, a first character of said triplet being randomly selected from a first character set specifying position and identity of an occupying atom in a molecular skeleton of said molecular structure, a second character of said triplet being randomly selected from a second character set specifying the identity of a substituent group attached to said occupying atom, and a third character of said triplet being randomly selected from a third character set specifying the location of said substituent on the atom specified by said first character of the triplet. 9. The method according to claim 8 wherein the molecular linear character sequence is decoded using an effective molecular assembly algorithm which sequentially translates each triplet from said molecular linear sequence and thereafter fills unfilled positions on said molecular skeleton with hydrogen atoms. 10. The method according to claim 9 wherein the step of mutating said molecular structure includes at least one of the following steps: i) mutating said molecular genotype by randomly interchanging at least one of said first, second and third characters of at least one triplet from the associated character sets, ii) deletion wherein a triplet from molecular genotype is deleted, iii) duplication wherein a triplet in the molecular genotype is duplicated, iv) inversion wherein the sequential order of one or more triplets in the molecular genotype is reversed, and v) insertion wherein a triplet from the molecular genotype is inserted at a different position in the molecular genotype. 11. The method according to claim 10 wherein the step of mutating said molecular genotypes includes recombining randomly selected pairs of said retained mutated molecular genotypes whereby corresponding characters in said molecular linear sequences are interchanged. 12. The method according to claim 2 wherein each character in the receptor linear character sequence specifies one of either a spatial turning instruction and a charged site with no turn. 13. The method according to claim 12 wherein said receptor phenotype comprises at least one linear polymer provided with a plurality of subunits, one of said subunits being a first subunit in said at least one linear polymer. 14. The method according to claim 13 wherein said receptor linear character sequence is decoded using an effective receptor assembly algorithm in which turning instructions applied to each subunit subsequent to said first subunit are made relative to an initial position of said first subunit. 15. The method according to claim 14 wherein said characters specifying spatial turning instructions code for no turn, right turn, left turn, up turn, down turn, and wherein characters specifying charge sites code for positively charged site with no turn, and negatively charged site with no turn. 16. The method according to claim 14 wherein said subunits are substantially spherical having a Van der Waals radii substantially equal to the Van der Waals radius of hydrogen. 17. The method according to claim 15 wherein the step of mutating said receptor genotype includes at least one of the following steps: i) deletion wherein a character from the receptor genotype is deleted, ii) duplication wherein a character in the receptor genotype is duplicated, iii) inversion wherein the sequential order of one or more characters in the receptor genotype is reversed, and iv) insertion wherein a character from the receptor genotype is inserted at a different position in the genotype. 18. The method according to claim 17 wherein the step of mutating said receptor genotypes includes recombining randomly selected pairs of said retained mutated receptor genotypes whereby corresponding characters in said receptor linear sequences are interchanged. 19. A method of screening chemical structures for preselected functional characteristics, comprising: a) producing a simulated receptor genotype by generating a receptor linear character sequence which codes for spatial occupancy and charge; b) decoding the genotype to produce a receptor phenotype, providing at least one target molecule exhibiting a selected functional characteristic, calculating an affinity between the receptor and each target molecule in a plurality of orientations using an effective affinity calculation, calculating a sum and maximal affinity between each target molecule and receptor, calculating a sum affinity correlation coefficient for sum affinity versus said functional characteristic of the target molecule and a maximal affinity correlation coefficient for maximal affinity versus said functional characteristic, and calculating a fitness coefficient dependent on said sum and maximal affinity correlation coefficients; c) mutating the receptor genotype and repeating step b) and retaining and mutating those receptors exhibiting increased fitness coefficients until a population of receptors with preselected fitness coefficients are obtained; thereafter d) calculating an affinity between a chemical structure being screened and each receptor in a plurality of orientations using said effective affinity calculation, calculating an affinity fitness score which includes calculating a sum and maximal affinity between the compound and each receptor and comparing at least one of said sum and maximal affinity to the sum and maximal affinities between said at least one target and said population of receptors whereby said comparison is indicative of the level of functional activity of said chemical structure relative to said at least one target molecule. 20. The method according to claim 19 wherein said effective affinity calculation comprises two measures,
机译:1.一种基于计算机的设计具有预选功能特征的化学结构的方法,包括以下步骤:(a)产生以线性字符序列编码的模拟受体表型的物理模型,并提供一组在以下位置共享的靶分子至少一个可量化的功能特征; (b)每个靶分子; (i)使用有效亲和力计算来计算多个方向中的每个取向上的受体与靶分子之间的亲和力; (ii)通过对计算的亲和力求和来计算总亲和力; (iii)确定最大亲和力; (c)使用计算出的总和和最大亲和力来:(i)计算最大亲和力和可量化的功能特性之间的最大亲和力相关系数; (ii)计算总和亲和力与可量化功能特征之间的总和亲和力相关系数; (d)使用最大相关系数和和相关系数来计算适合度系数; (e)改变受体的结构并重复步骤(b)至(d),直到获得具有预选拟合系数的受体群; (f)提供以分子线性字符序列编码的化学结构的物理模型,使用所述有效亲和力计算,使用所述有效亲和力计算,在多个方向上计算化学结构与每个受体之间的亲和力,使用所计算的亲和力来计算亲和力适合度得分; (g)改变化学结构以产生化学结构的变体,并重复步骤(f); (h)保留并进一步改变其亲和力得分接近预选亲和力得分的化学结构变体。 2.根据权利要求1所述的方法,其中产生模拟受体基因型的步骤包括产生编码空间占有率和电荷的受体线性特征序列,并且其中产生化学结构的物理模型的步骤包括产生所述分子线性。编码空间占用和费用的字符序列。 3.根据权利要求2所述的方法,其中,所述有效亲和力计算包括两个量度,第一个是接近度量度,其中,所述模拟受体上的不带电部分的比例充分接近所述分子结构上的非极性区域,以产生有效的伦敦色散。估计力,第二个是所述模拟受体的带电部分与存在于所述分子结构中的偶极之间产生的电荷-偶极静电力相互作用的总强度。 4.根据权利要求2所述的方法,其中,所述计算亲和度适合度得分的步骤包括计算分子结构与每个受体之间的总和和最大亲和力,适合度得分计算为: {(|计算的最大亲和力-目标最大亲和力| /目标最大亲和力}},其中,所述预先选择的适应度得分基本为零。5.根据权利要求2所述的方法,其中,所述计算亲和度适应度得分的步骤包括计算总和和最大亲和度在分子结构和每个受体之间,适应度得分计算为:Σ {(|计算的最大亲和力-目标最大亲和力| / 2 x目标的最大亲和力)+(|计算的总亲和力目标和亲和力/ 2 x目标和亲和力6.根据权利要求2所述的方法,其中,所述和亲和度相关系数之和为rSA 2,所述最大亲和度相关系数为rMA 2,并且其中,所述适合度系数基本上为零。 7.根据权利要求2所述的方法,其中,所述和亲和相关系数之和为:F =(rMA 2×rSA 2)0.5,其中所述预选适应度系数基本上为1。 rSA-MA 2,所述最大亲和力相关系数为r MA 2,并且其中所述适应度系数为F =(r MA 2 x(1-rSA-MA 2))0.5,并且其中所述预先选择适应度系数基本上是统一的。 8.根据权利要求2所述的方法,其中,所述分子线性字符序列包括多个连续字符三联体,所述三联体的第一字符是从指定所述分子骨架中占据原子的位置和身份的第一字符集中随机选择的。分子结构,所述三联体的第二个特征是从指定与所述占据原子相连的取代基的身份的第二个特征集中随机选择的所述三联体的第三个字符是从指定所述取代基在由所述三联体的所述第一个字符指定的原子上的位置的第三字符集中随机选择的。 9.根据权利要求8的方法,其中使用有效的分子组装算法对分子线性字符序列进行解码,该算法从所述分子线性序列顺序翻译每个三联体,然后用氢原子填充所述分子骨架上的未填充位置。 10.根据权利要求9的方法,其中突变所述分子结构的步骤包括以下步骤中的至少一个:i)通过随机交换至少一个三联体的所述第一,第二和第三特征中的至少一个来突变所述分子基因型。 (ii)删除,其中分子基因型的三联体被删除,iii)重复,其中分子基因型的三联体重复,iv)倒置,其中分子基因型中一个或多个三联体的顺序颠倒, v)插入,其中来自分子基因型的三联体插入分子基因型中的不同位置。 11.根据权利要求10的方法,其中突变所述分子基因型的步骤包括重组所述保留的突变分子基因型的随机选择对,从而互换所述分子线性序列中的相应字符。 12.根据权利要求2所述的方法,其中,所述受体线性字符序列中的每个字符指定空间转向指令和没有转向的带电位置之一。 13.根据权利要求12所述的方法,其中,所述受体表型包括具有多个亚基的至少一种线性聚合物,所述亚基之一是所述至少一种线性聚合物中的第一亚基。 14.根据权利要求13所述的方法,其中,使用有效的接收器组装算法来解码所述接收器线性字符序列,其中相对于所述第一子单元的初始位置做出施加到所述第一子单元之后的每个子单元的转向指令。 15.根据权利要求14所述的方法,其中,所述指定空间转弯指令的字符编码为不转弯,右转,左转,上转,下转,并且其中,指定充电位点的字符编码为不转弯的带正电的位置和带负电的网站没有转弯。 16.如权利要求14所述的方法,其特征在于,所述亚基是基本上球形的,其范德华半径大体等于氢的范德华半径。 17.根据权利要求15所述的方法,其中使所述受体基因型突变的步骤包括以下步骤中的至少一个:i)删除,其中所述受体基因型的字符被删除,ii)重复,其中所述受体基因型的字符被重复。 ; iii)反转,其中受体基因型中一个或多个字符的顺序颠倒,以及iv)插入,其中来自受体基因型的字符插入到基因型的不同位置。 18.根据权利要求17的方法,其中突变所述受体基因型的步骤包括重组所述保留的突变受体基因型的随机选择对,从而互换所述受体线性序列中的相应特征。 19.一种针对预选功能特征筛选化学结构的方法,包括:a)通过产生编码空间占用和电荷的受体线性特征序列来产生模拟的受体基因型; b)解码基因型以产生受体表型,提供至少一个表现出选定功能特性的靶分子,使用有效亲和力计算在多个方向上计算受体与每个靶分子之间的亲和力,计算总和和最大亲和力在每个靶分子和受体之间,计算总和亲和力相对于所述靶分子的所述功能特性的总和亲和相关系数,以及最大亲和力相对于所述功能特性的最大亲和相关系数,并计算取决于所述和和最大亲和力的适应性系数相关系数; c)突变受体基因型并重复步骤b),并保留和突变那些适应度系数增加的受体,直到获得具有预选适应度系数的受体群为止;此后,d)使用所述有效亲和力计算来计算被筛选的化学结构与多个方向上的每个受体之间的亲和力。,计算亲和力适合度评分,包括计算化合物与每种受体之间的总和和最大亲和力,并将所述总和和最大亲和力中的至少一个与所述至少一个靶标和所述受体群体之间的总和和最大亲和力进行比较。比较表明所述化学结构相对于所述至少一种靶分子的功能活性水平。 20.根据权利要求19所述的方法,其中,所述有效亲和力计算包括两个量度,

著录项

  • 公开/公告号EA001095B1

    专利类型

  • 公开/公告日2000-10-30

    原文格式PDF

  • 申请/专利权人 UNIVERSITY OF GUELPH;

    申请/专利号EA19980000843

  • 发明设计人 SCHMIDT JONATHAN M.;

    申请日1996-03-22

  • 分类号G06N7/00;

  • 国家 EA

  • 入库时间 2022-08-22 01:56:37

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号