首页> 外国专利> Method of safe assessment of vacancy of a track section with regard to increase of resistance to spurious effects and circuit track circuit arrangement for making the method

Method of safe assessment of vacancy of a track section with regard to increase of resistance to spurious effects and circuit track circuit arrangement for making the method

机译:关于对寄生效应的抵抗力增加的轨道区段的空位的安全评估方法以及用于该方法的电路轨道电路布置

摘要

The present invention relates to a method of safe assessment of vacancy of a track section with regard to increase of resistance to spurious effects, where a the track circuit (KO), intended for assessment of a railway vehicle (KV) in a certain track section (KU), is formed by a feeding end (NK) and a receiver end (PK), wherein the method is characterized in that a voltage correction component (KSN) as well as contractually deformed voltage component (SDN) are supplied in the track circuit. At the same time, a voltage spurious component (RSN) penetrates into the track circuit (KO) due to spurious effects (RV). Consequently, by superposing these voltages (KSN, SDN, and RSN) a track voltage (UK) is generated. said track voltage (UK) is then subjected to mathematical analysis in a first channel receiver (KP1) to m-th channel receiver (KPM) by the action of both a reference voltage (RN) and a control voltage (CN) intended for controlling time characteristic of said contractually deformed voltage (SDN), to thereby safely suppressing the voltage spurious component (RSN) below a required limit, and at the same time, there is assessed a vacancy of the track section (KU) including accidental state of the track circuit (KO) or occupancy thereof by a railway vehicle (KV) based on amplitude and phase of the track voltage (UK) relative to amplitude and phase of the reference voltage (RN) and time characteristic of the control voltage (CN). Subsequently vacancy of the track section (KU) is identified by assessment of a first channel output (V1) of the first channel receiver (KP1) to the m-th channel output (VM) of the m-th channel receiver (KPM) in the output assessment unit (JVV) using a method of two from two to two from m channel outputs. Disclosed is also a track circuit arrangement for making the above-described method of safe assessment of vacancy of a track section with regard to increase resistance to spurious effects wherein the invented track circuit arrangement is characterized in that the first terminal (ZNN-1) of a supply voltage source (ZNN) is connected to a third terminal (KP1-3) of a first channel receiver (KP1), to a third terminal (KP2-3) of a second channel receiver (KP2) and to a third terminal (KPM-3) of an m-th channel receiver (KPM), the second terminal (ZNN-2) of said supply voltage source (ZNN) is connected to a fourth terminal (KP1-4) of the first channel receiver (KP1), to a fourth terminal (KP2-4) of the second channel receiver (KP2) and to a fourth terminal (KPM-4) of the m-th channel receiver (KPM), the third terminal (ZNN-3) of said supply voltage source (ZNN) is connected to a first terminal (ZSDN-1) of a contractually deformed voltage (SDN) source (ZSDN), the fourth terminal (ZNN-4) of said supply voltage source (ZNN) is connected to a second terminal (ZSDN-2) of said contractually deformed voltage (SDN) source (ZSDN), the third terminal (ZSDN-3) of said contractually deformed voltage (SDN) source (ZSDN) is connected to a first terminal (KR-1) of a control element (KR), The fourth terminal (ZSDN-4) of said contractually deformed voltage (SDN) source (ZSDN) is connected to a second terminal (KR-2) of said control element (KR), the fifth terminal (ZSDN-5) of said contractually deformed voltage (SDN) source (ZSDN) is connected to a second terminal (PC-2) of a current sensor (PC), the sixth terminal (ZSDN-6) of said contractually deformed voltage (SDN) source (ZSDN) is connected to a first terminal (PC-1) of said current sensor (PC), the seventh terminal (ZSDN-7) of said contractually deformed voltage (SDN) source (ZSDN) is connected to a second terminal (KO-2) of the track circuit (KO) further to the fourth terminal (PC-4) of said current sensor (PC), The eighth terminal (ZSDN-8) of said contractually deformed voltage (SDN) source (ZSDN) is connected to a first terminal (PZK-1) of a complex-nature pre-load in series with a first switch (KR1) of the control element (KR) to the first terminal (KO-1) of the track circuit (KO), the third terminal (PC-3) of said current sensor (PC) is connected to a second terminal (PZK-2) of the complex-nature pre-load (PZK), the first terminal (ZCN-1) of a control voltage source (ZCN) is connected to the first terminal (KP1-1) of the first channel receiver (KP1) further to the first terminal (KP2-1) of the second channel receiver (KP2) and to the first terminal (KPM-1) of the m-th channel receiver (KPM), the second terminal (ZCN-2) of said control voltage source (ZCN) is connected to the second terminal (KP1-2) of the first channel receiver (KP1), further to the second terminal (KP2-2) of the second channel receiver (KP2) and to the second terminal (KPM-2) of the m-th channel receiver (KPM), the third terminal (KO-3) of said track circuit (KO) is connected to the first terminal (RV-1) of spurious effects (RV), the fourth terminal (KO-4) of said track circuit (KO) is connected to the second terminal (RV-2) of the spurious effects (RV), the fifth terminal (KO-5) of said track circuit (KO) is connected to the fifth terminal (KP1-5) of the first channel receiver (KP1), further to the sixth terminal (KP2-6) of the second channel receiver (KP2) and to the sixth terminal (KPM-6) of the m-th channel receiver (KPM), the sixth terminal (KO-6) of the track circuit (KO) is connected to the sixth terminal (KP1-6) of the first channel receiver (KP1), to the fifth terminal (KP2-5) of the second channel receiver (KP2) and to the fifth terminal (KPM-5) of the m-th channel receiver (KPM), the seventh terminal (KP1-7) of the first channel receiver (KP1) is connected to the second terminal (JVV-2) of the output assessment unit (JVV), the eighth terminal (KP1-8) of the first channel receiver (KP1) is connected to the first terminal (JVV-1) of said output assessment unit (JVV), the seventh terminal (KP2-7) of the second channel receiver (KP2) is connected to the fourth terminal (JVV-4) of said output assessment unit (JVV), the eighth terminal (KP2-8) of the second channel receiver (KP2) is connected to the third terminal (JVV-3) of said output assessment unit (JVV), the seventh terminal (KPM-7) of the m-th channel receiver (KPM) is connected to the sixth terminal (JVV-6) of said output assessment unit (JVV), and the eighth terminal (KPM-8) of the m-th channel receiver (KPM) is connected to the fifth terminal (JVV-5) of said output assessment unit (JVV).
机译:本发明涉及一种关于增加对寄生效应的抵抗性的轨道区段的空缺的安全评估方法,其中,用于评估某一轨道区段中的铁路车辆(KV)的轨道电路(KO)。 (KU)由馈送端(NK)和接收器端(PK)形成,其中该方法的特征在于,在轨道中提供电压校正分量(KSN)以及收缩变形的电压分量(SDN)电路。同时,由于杂散效应(RV),电压杂散分量(RSN)渗透到跟踪电路(KO)中。因此,通过叠加这些电压(KSN,SDN和RSN),会生成跟踪电压(UK)。然后通过参考电压(RN)和旨在控制的控制电压(CN)的作用,在第一通道接收器(KP1)至第m通道接收器(KPM)中对所述轨道电压(UK)进行数学分析收缩变形电压(SDN)的时间特性,从而安全地将电压寄生分量(RSN)抑制在所需极限以下,同时评估轨道部分(KU)的空缺,包括空载的意外状态轨道电路(KO)的轨道电路(KO)或其占用,基于轨道电压(UK)的振幅和相位相对于参考电压(RN)的振幅和相位以及控制电压(CN)的时间特性。随后通过评估第一通道接收器(KP1)的第一通道输出(V1)到第m通道接收器(KPM)的第m通道输出(VM)来确定轨道部分(KU)的空位。输出评估单元(JVV)使用m通道输出中两个从两个到两个的方法。还公开了一种轨道电路装置,该轨道电路装置用于进行上述关于增加对寄生效应的抵抗性的轨道区段的空缺的安全评估方法,其中,本发明的轨道电路装置的特征在于,第一端子(ZNN-1)为电源电压源(ZNN)连接到第一通道接收器(KP1)的第三端(KP1-3),第二通道接收器(KP2)的第三端(KP2-3)和第三端(第m个频道接收器(KPM)的KPM-3),所述电源电压源(ZNN)的第二端子(ZNN-2)连接到第一个频道接收器(KP1)的第四端子(KP1-4)所述电源的第三端子(ZNN-3)连接到第二信道接收机(KP2)的第四端子(KP2-4)和第m信道接收机(KPM)的第四端子(KPM-4)。电压源(ZNN)连接到收缩变形电压(SDN)源(ZSDN)的第一端子(ZSDN-1),该端子的第四端子(ZNN-4) d电源电压源(ZNN)连接到所述合同形变电压(SDN)源(ZSDN)的第二端子(ZSDN-3),所述合同形变电压(SDN)源(ZSDN)的第三端子(ZSDN-3) )连接到控制元件(KR)的第一端子(KR-1),所述收缩变形电压(SDN)源(ZSDN)的第四端子(ZSDN-4)连接到第二端子(KR-2)在所述控制元件(KR)的第一个端子上,所述收缩变形电压(SDN)源(ZSDN)的第五个端子(ZSDN-5)连接到电流传感器(PC)的第二个端子(PC-2)所述收缩变形电压(SDN)源(ZSDN)的端子(ZSDN-6)连接到所述电流传感器(PC)的第一端子(PC-1),所述收缩变形电压的第七端子(ZSDN-7) (SDN)源(ZSDN)连接到跟踪电路(KO)的第二端(KO-2),进一步连接到所述电流传感器(PC)的第四端(PC-4),第八端(所述收缩变形电压(SDN)源(ZSDN)的ZSDN-8)与控制元件(KR)的第一开关(KR1)串联的复自然预负载的第一端子(PZK-1)连接。 )到电流回路(KO)的第一端子(KO-1),所述电流传感器(PC)的第三端子(PC-3)连接到复自然电路的第二端子(PZK-2)负载(PZK)时,控制电压源(ZCN)的第一端子(ZCN-1)连接到第一通道接收器(KP1)的第一端子(KP1-1),进一步连接到第一端子(KP2-1)第二通道接收器(KP2)的第二端(KPM-1)和第m通道接收器(KPM)的第一端子(KPM-1),所述控制电压源(ZCN)的第二端子(ZCN-2)连接到第一频道接收器(KP1)的第二终端(KP1-2),第二个频道接收器(KP2)的第二终端(KP2-2)和第m个频道的第二终端(KPM-2)接收器(KPM),sa的第三终端(KO-3) id跟踪电路(KO)连接到寄生效应(RV)的第一端子(RV-1),所述跟踪电路(KO)的第四端子(KO-4)连接到第二端子(RV-2)杂散效应(RV),所述跟踪电路(KO)的第五端子(KO-5)连接到第一信道接收器(KP1)的第五端子(KP1-5),进一步连接到第二信道的第六端子(KP2-6)跟踪电路(KO)的第六端子(KO-6)连接到第六端子(KP1-6),并将接收器(KP2)和第m通道接收器(KPM)的第六端子(KPM-6)连接)到第二个频道接收器(KP2)的第五终端(KP2-5)和第m个频道接收器(KPM)的第五终端(KPM-5),第一通道接收器(KP1)的端子(KP1-7)连接到输出评估单元(JVV)的第二端子(JVV-2),第一通道接收器(KP1)的第八端子(KP1-8)连接到所述输出评估单元(JVV)的第一端子(JVV-1),第二通道接收器(KP2)的第七端子(KP2-7)连接到所述输出的第四端子(JVV-4)评估单位(JVV),第八第二通道接收器(KP2)的终端(KP2-8)连接到所述输出评估单元(JVV)的第三端(JVV-3),第m通道接收器(KPM-7)的第七端(KPM-7) KPM)连接到所述输出评估单元(JVV)的第六端子(JVV-6),第m通道接收器(KPM)的第八端子(KPM-8)连接到第五端子(JVV- 5)所述输出评估单元(JVV)。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号