首页> 外国专利> FORMING METHOD AND OBSERVATIONS stereoscopic images with maximum spatial resolution AND DEVICE FOR ITS IMPLEMENTATION (VARIANTS)

FORMING METHOD AND OBSERVATIONS stereoscopic images with maximum spatial resolution AND DEVICE FOR ITS IMPLEMENTATION (VARIANTS)

机译:具有最大空间分辨率的形成方法和观测立体图像及其实现装置(变体)

摘要

1. A method of forming a stereoscopic observation and the maximum spatial resolution, comprising the steps that an optical source generating a light wave by a matrix-addressable by M rows and N columns, the first optical modulator modulating the summing is performed in the light wave mn-th element of the first optical modulator in accordance with the sum of the quantities and brightness mn-th elements of the images of the left and right views, where m = 1, 2, ..., M, n = 1, 1, ..., N, using the matrix-addressable by M rows and N columns of the second optical modulator carried encoding modulation light waves in mn-th element of the second optical modulator in accordance with non-linear functions of algebraic relations between the values and x mn-luminance image elements of the left and right angles with the first and second optical analyzers with mutually complementary optical decoding parameters form the first and second light fluxes from the intensity values and Equal values and x mn-luminance image elements of the left and right views in the left and right forming windows, optically coupled with the left and right observation windows, which observe the left and right angles of the stereo image, characterized in that with the help of matrix-addressed by M rows and N columns optical modulator uniform action, causing uniform modulation of the light wave intensity as equal in magnitude and sign of the change of the light wave intensity left and right windows form, offering direct summing modulated by modulating the magnitude of the intensity of the light wave or indirect summing modulated by modulating the other physical characteristics of the light wave - propagation direction or the angle of convergence or divergence or spectral characteristics of a polarization state or phase values ​​or by modulation of the combination remaining the physical characteristics of the light wave in the mn-th element of the optical modulator of uniform action, submitting to its control input compensating summation signal with an amplitude directly proportional to the values ​​of the function ΛΣ linearization summing modulation, using matrix-addressed by M rows and N columns of the optical modulator of the difference of action, causing a difference modulation of the intensity of the light wave in the form of equal magnitude but opposite in sign to the light wave intensity changes in left and right windows form, offering direct separating modulation by the modulation of the light wave intensity or indirect separating modulation by modulating the other physical characteristics of the light wave - propagation direction or magnitude of the convergence angle or divergence or spectral characteristics or polarization state, or the amount of phase, or for by modulation of the other combinations of physical characteristics of the light wave in the mn-th element of the optical modulator is a differential action, feeding on its control input the compensating signal division with an amplitude directly proportional to the values ​​of the function ΛΞ linearization of the pitch modulation, and generating modulated light intensity in the left and right windows form using the first and second optical converters with mutually complementary parameters conversion pitch modulation, with the same parameters conversion summing modulation and with the same parameters of the optical transmission as a direct pitch component and a direct component of the summation light intensity.;2. A method according to claim 1, characterized in that the compensation signal is fed summing a first particular embodiment, it with an amplitude directly proportional to the function ΛΣ linearization in its first summing modulation a particular embodiment, the amount taken from the works brightness values ​​mn-th pixel of the left and right views: Or summing the compensating signal is fed in its second particular embodiment with an amplitude directly proportional to the product of the amount brightness values ​​mn-th pixel of the left and right views on the function ΛΣ summing linearizing its second modulation a particular embodiment: And a compensating signal dividing it is fed to the first embodiment of with an amplitude directly proportional to the values ​​of the function ΛΞ linearization in her first pitch modulation a particular embodiment, taken on the ratio values brightness mn-m image elements left and right views: Or compensating dividing signal fed to its second particular embodiment with an amplitude directly proportional to the product of the relationship brightness values ​​in mn-m image elements of the left and right views on the function ΛΞ linearization in its second pitch modulation a particular embodiment: Where the function ΛΣ linearization in its first summing modulation particular embodiment, determining as a function The inverse of the calibration function summing modulation nonlinearities in its first a particular embodiment: And the function ΛΣ summing linearizing its second modulation particular embodiment, determining as a function Whose values ​​are the reciprocals to the values ​​of the calibration function FΣ nonlinearity of the modulation in the second adder a particular embodiment: , Λ functionΞ linearization in her first pitch modulation particular embodiment, determining as a function The inverse of the calibration function FΞ pitch modulation nonlinearities in its first a particular embodiment: And the function ΛΞ linearization pitch modulation in its second particular embodiment, determined as a function Whose values ​​are the reciprocals to the values ​​of non-linearity of the calibration function of the pitch modulation in its second a particular embodiment: , With calibration function summing modulation nonlinearities in its first a particular embodiment is equal to the aggregate calibration values ​​uniformly modulated component light intensity at the output of any of the windows . formation: when applied to the control input of the optical modulator of uniform action of linearly changing the calibration signal summing modulation and calibration function FΞ summing nonlinearity its second modulation a particular embodiment, is the ratio of the sequence of calibration values ​​uniformly modulated component light intensity at the output of any of the windows . the formation of a sequence of values ​​corresponding amplitude monotonically-changing calibration signal summing modulation: , Calibration function FΞ pitch modulation nonlinearities in its first a particular embodiment is equal to the quotient of the set of calibration values ​​difference-modulated component light intensity in the left window forming on the set of calibration values ​​difference-modulated component the intensity of the light flux in the right window formation: when applied to the control input of the optical modulator is a differential action of linearly changing the calibration signal pitch modulation and calibration function FΞ separating nonlinearity its second modulation a particular embodiment, is the ratio of the aggregate calibration values ​​difference-modulated component light intensity in the left window the formation of a set of calibration values ​​difference-modulated component the intensity of the light flux in the right window forming divided into a plurality of corresponding values ​​monotonically-varying amplitude calibration signal pitch modulation: .;3. The method of claim 1, wherein the compensation signal is fed summing a first particular embodiment, it with an amplitude directly proportional to the function ΛΣ linearization in its first summing modulation a particular embodiment, the amount taken from the works brightness values ​​mn-th pixel of the left and right views: Or summing the compensating signal is fed in its second particular embodiment with an amplitude directly proportional to the product of the amount brightness values ​​mn-th pixel of the left and right views on the function ΛΣ summing linearizing its second modulation a particular embodiment: , A compensating signal dividing it is fed to the first embodiment of with an amplitude directly proportional to the values ​​of the function ΛΞ linearization in her first pitch modulation a particular embodiment, taken on the ratio values brightness mn-m image elements left and right views: Or compensating dividing signal fed to its second particular embodiment with an amplitude directly proportional to the product of the relationship brightness values ​​in mn-m image elements of the left and right views on the function ΛΞ linearization in its second pitch modulation a particular embodiment: Where the function ΛΣ linearization in its first summing modulation particular embodiment, determining as a function The inverse of the calibration function summing modulation nonlinearities in its first a particular embodiment: And the function ΛΣ summing linearizing its second modulation particular embodiment, determining as a function Whose values ​​are the reciprocals to the values ​​of the calibration function FΣ nonlinearity of the modulation in the second adder a particular embodiment: , Λ functionΞ linearization in her first pitch modulation particular embodiment, determining as a function The inverse of the calibration function FΞ pitch modulation nonlinearities in its first a particular embodiment: And the function ΛΞ linearization pitch modulation in its second particular embodiment, determined as a function Whose values ​​are the reciprocals to the values ​​of non-linearity of the calibration function of the pitch modulation in its second a particular embodiment: , With calibration function summing modulation nonlinearities in its first a particular embodiment is equal to the aggregate calibration values ​​uniformly modulated component light intensity at the output of any of the windows . formation: when applied to the control input of the optical modulator of uniform action of linearly changing the calibration signal summing modulation and calibration function FΞ summing nonlinearity its second modulation a particular embodiment, is the ratio of the sequence of calibration values ​​uniformly modulated component light intensity at the output of any of the windows . the formation of a sequence of values ​​corresponding amplitude monotonically-changing calibration signal summing modulation: , Calibration function FΞ pitch modulation nonlinearities in its first a particular embodiment is equal to the quotient of the set of calibration values ​​difference-modulated component light intensity in the left window forming on the set of calibration values ​​difference-modulated component the intensity of the light flux in the right window formation: when applied to the control input of the optical modulator is a differential action of linearly changing the calibration signal pitch modulation and calibration function FΞ separating nonlinearity its second modulation a particular embodiment, is the ratio of the aggregate value of the gauge difference-modulated component light intensity in the left window the formation of a set of calibration values ​​difference-modulated component the intensity of the light flux in the right window forming divided into a plurality of corresponding values ​​monotonically-varying amplitude calibration signal pitch modulation: .;4. A method according to claim 1, characterized in that the function values ​​ΛΣ summing linearization division modulation dependent signal values ​​and / or function values ​​ΛΞ linearization pitch modulation dependent summing signal values.;5. The method according to claim 1, characterized in that the summing is carried out by modulation of light beam intensity modulation using real-optical amplitude modulator, a separating optical modulation is performed by modulating the polarization state of the light flux by phase modulator with an arbitrary polarization characteristic unambiguous the transition between two mutually complementary optical polarization phase states and pitch conversion is performed in the modulation of the luminous flux separating component intensity by the first and second polarization converters with mutually complementary polarization parameters.;6. A method according to claim 1, characterized in that an optical source generating a light beam with the first spectrum using real-optical amplitude modulator summing the amplitude modulation performed by modulating the light intensity, the modulation is performed in a separatory form from the spectral modulation separatory the transition from the first range to second range by frequency-optical modulator when changing the voltage on its control input from the first to the second value via the first and second frequency optical analyzers carried conversion spectral pitch modulation to a separatory component light intensity, wherein the spectral characteristics of the first and second frequency analyzers optical correspond to the first and second spectra.;7. The method according to claim 1, characterized in that an optical source with a collimated light beam formed by the diffractive optical modulator adder summing diffraction modulation is performed by changing the deflection angle of the light flux in the first transverse direction by dividing the diffractive optical modulator is carried out a separating diffraction modulation by changing the angle of the light deflection in the second lateral direction, and via an asymmetric in two mutually orthogonal transverse directions zhalyuznogo optical converter is carried out in the first transverse direction selection component of the luminous flux corresponding to the summing of the diffraction modulation in the left and right windows of formation, and in the second transverse direction - the allocation of part of the luminous flux corresponding to the pitch of the diffraction modulation between the left and right formation windows.;8. The method of claim 1, wherein said analog using a real-optical modulator amplitude modulation is performed by summing the analog light intensity modulation by the polarization modulator bistable bistable polarization separating performed by modulation of pulse width modulation between the two mutually complementary polarization states by the first and second polarization converters with mutually complementary polarization states of the polarization conversion performed analog modulation bistable separating pitch variation component light intensity, while the function linearization bistable polarization modulation determined pitch in the first form as a function of The inverse of the nonlinearity function bistable polarization pitch modulation in her first version: , Which is defined as the aggregate results of the quotient of the average time of calibration values ​​of the pitch component of the luminous flux intensity in the left formation window to the average time the calibration values ​​of the intensity of the pitch component the light flux in the right window of formation: where . when applied to the control input of the bistable polarization modulator calibration PWM signal with linearly varying pulse width and linearization function separatory bistable polarization modulation in its second embodiment is defined as the set of quantities, each of which is the inverse nonlinearity to the corresponding value bistable polarization separating function in its second modulation version: Which is the set of results the quotient of the time averaged calibration values ​​of the pitch component of the luminous flux intensity in the left formation window to the average time the calibration values ​​of the intensity of the pitch component light flux forming a right window, divided by time-averaged values ​​calibration signal a monotonically-changing pulse duration: where .;9. The method of claim 1, wherein the summing and / or separating the modulation is performed by a combination of analog and bistable or multistable modulation characteristics of luminous flux.;10. A method of forming a stereoscopic observation and the maximum spatial resolution, comprising the steps that an optical source generating a light wave by a matrix-addressable by M rows and N columns, the first optical modulator modulating the summing is performed in the light wave mn-th element of the first optical modulator in accordance with the sum of the quantities and x mn-luminance image elements of the left and right views, using matrix-addressable by M rows and N columns of the second optical modulator encoding is performed in the modulation of the light wave mn-th element of the second optical modulator in accordance with non-linear functions of algebraic relations between the values and x mn-luminance image elements of the left and right views, setting initial values ​​of mutually complementary optical modulation parameters in adjacent and 2i-x (2i-1) -x columns of the second optical modulator, where m, n, i = 1, 2, ..., N, through N columns addressed by a spatially periodic optical analyzer by setting mutually complementary optical analysis of parameters related to 2k-x and (2k-1) -x columns spatially periodic optical analyzer where k = 1, 2, ..., N They form the first and second groups of light beams with the values ​​of the total intensity and Equal values and x mn-luminance image elements of the left and right views in the left and right formation zones, wherein one of the zones of the formation directed first group N light beams, the first N / 2 of which pass through the N / 2 even 2i-x columns of the second optical modulator, and N / 2 even 2k-x columns spatially periodic optical analyzer, and the remaining N / 2 of the light beams pass through the N / 2 odd (2i-1) th column of the second optical modulator, and N / 2 odd (2k-1) -x columns spatially periodic optical analyzer, and in other areas of direct formation a second group of N light beams, the first N / 2 of which pass through the N / 2 odd (2i-1) th column of the second optical modulator, and N / 2 even-numbered column 2k-x spatially periodic optical analyzer, and the remaining N / 2 of the light beams pass through the N / 2 odd columns x 2i-optical modulator and a second N / 2 odd (2k-1) th column of a spatially periodic optical analyzer, and observe the left and right angles, respectively, the left stereo and right surveillance zones, optically coupled respectively to the left and right forming zones, characterized in that with the help of matrix-addressed by M rows and N columns optical modulator uniform action is carried out directly summing modulated by modulating the magnitude of the intensity of the light wave or indirect summing modulated by modulating the other physical characteristics of the light wave - propagation direction or magnitude the angle of convergence or divergence or the spectral characteristics, or the state of polarization or the amount of phase modulation or by a combination of other physical characteristics of the light waves in the mn-th light modulator element uniform action by feeding its control input to a compensating signal summing an amplitude directly proportional to the values ​​of the function ΛΣ linearization summing modulation, using matrix-addressed by M rows and N columns optical modulator differential action is carried out directly separating modulation by the modulation of the light wave intensity or indirect separating modulation by modulating the other physical characteristics of the light wave - propagation direction or magnitude of the convergence angle or divergence or spectral characteristics, or the polarization state or value of the phase or by modulation combinations other physical characteristics of the light waves in the mn-th element of the optical modulator differential action setting with mutually complementary values ​​pitch modulation performance in adjacent 2i-x and ( 2i-1) th column of the optical modulator differential action where i = 1, 2, ..., N, and feeding it to the control input of the compensating signal division with an amplitude directly proportional to the function ΛΞ linearization pitch modulation, the first and second groups of N modulated in intensity of light beams formed via addressable by N columns spatially periodic optical converter, characterized by mutually complementary parameters conversion pitch modulation to its adjacent 2k-x and (2k-1)-x columns, the same parameters conversion summing modulation, the same parameters of the optical transmission as a direct pitch component and a direct component of the summation of the luminous flux intensity for all N columns spatially periodic optical converter.;11. The method of claim 2, wherein the compensation signal is fed summing a first particular embodiment, it with an amplitude directly proportional to the function ΛΣ linearization in its first summing modulation a particular embodiment, the amount taken from the works brightness values ​​mn-th pixel of the left and right views: Or summing the compensating signal is fed in its second particular embodiment with an amplitude directly proportional to the product of the amount brightness values ​​mn-th pixel of the left and right views on the function ΛΣ summing linearizing its second modulation a particular embodiment: , A compensating signal dividing it is fed to the first embodiment of with an amplitude directly proportional to the values ​​of the function ΛΞ linearization in her first pitch modulation a particular embodiment, taken on the ratio values brightness mn-m image elements left and right views: Or compensating dividing signal fed to its second particular embodiment with an amplitude directly proportional to the product of the relationship brightness values ​​in mn-m image elements of the left and right views on the function ΛΞ linearization in its second pitch modulation a particular embodiment: Where the function ΛΣ linearization in its first summing modulation particular embodiment, determining as a function The inverse of the calibration function summing modulation nonlinearities in its first a particular embodiment: And the function ΛΣ summing linearizing its second modulation particular embodiment, determining as a function Whose values ​​are the reciprocals to the values ​​of the calibration function FΣ nonlinearity of the modulation in the second adder a particular embodiment: , Λ functionΞ linearization in her first pitch modulation particular embodiment, determining as a function The inverse of the calibration function FΞ pitch modulation nonlinearities in its first a particular embodiment: And the function ΛΞ linearization pitch modulation in its second particular embodiment, determined as a function Whose values ​​are the reciprocals to the values ​​of non-linearity of the calibration function of the pitch modulation in its second a particular embodiment: While the calibration function FΣ summing modulation nonlinearities in its first a particular embodiment is equal to the aggregate calibration values ​​uniformly modulated component light intensity at the output of any zone . formation: when applied to the control input of the optical modulator of uniform action of linearly changing the calibration signal summing modulation and calibration function FΞ summing nonlinearity its second modulation a particular embodiment, is the ratio of the sequence of calibration values ​​uniformly modulated component light intensity at the output of any zone . the formation of a sequence of values ​​corresponding amplitude monotonically-changing calibration signal summing modulation: , Calibration function FΞ pitch modulation nonlinearities in its first a particular embodiment is equal to the quotient of the set of calibration values ​​difference-modulated component the light intensity in the left area forming on the set of calibration values ​​difference-modulated component the light intensity in the right area formation: when applied to the control input of the optical modulator is a differential action of linearly changing the calibration signal pitch modulation and calibration function FΞ separating nonlinearity its second modulation a particular embodiment, is the ratio of the aggregate calibration values ​​difference-modulated component the light intensity in the left area the formation of a set of calibration values ​​difference-modulated component the light intensity in the right area forming divided into a plurality of corresponding values ​​monotonically-varying amplitude calibration signal pitch modulation: .;12. The method according to claim 2, characterized in that the function values ​​ΛΣ summing linearization division modulation dependent signal values ​​and / or function values ​​ΛΞ linearization pitch modulation dependent summing signal values.;13. The method according to claim 2, characterized in that the summing is carried out by modulation of light beam intensity modulation using real-optical amplitude modulator, a separating optical modulation is performed by modulating the polarization state of the light flux by phase modulator with an arbitrary polarization characteristic unambiguous the transition between two mutually complementary optical polarization phase states and pitch conversion is performed in the modulation of the luminous flux separating component intensity by the first and second polarization converters with mutually complementary polarization parameters.;14. The method according to claim 2, characterized in that an optical source generating a light beam with the first spectrum using real-optical amplitude modulator summing the amplitude modulation performed by modulating the light intensity, the modulation is performed in a separatory form from the spectral modulation separatory the transition from the first range to second range by frequency-optical modulator when changing the voltage on its control input from the first to the second value via the first and second frequency optical analyzers carried conversion spectral pitch modulation to a separatory component light intensity, wherein the spectral characteristics of the first and second frequency analyzers optical correspond to the first and second spectra.;15. The method according to claim 2, characterized in that an optical source with a collimated light beam formed by a Strongly diffractive optical modulator adder summing diffraction modulation performed by changing the deflection angle of the light flux in the first transverse direction by dividing the diffractive optical modulator carried separatory diffraction modulation by changing the angle of light deflection in a second transverse direction and using asymmetric in two mutually orthogonal transverse directions zhalyuznogo optical converter is carried out in the first transverse direction selection component of the luminous flux corresponding to the summing of the diffraction modulation in the left and right areas of formation, and in the second transverse direction - the allocation of part of the luminous flux corresponding to the pitch of the diffraction modulation between the left and right forming zones.;16. The method of claim 2, wherein said analog using a real-optical modulator amplitude modulation is performed by summing the analog light intensity modulation by the polarization modulator bistable bistable polarization separating performed by modulation of pulse width modulation between the two mutually complementary polarization states by the first and second polarization converters with mutually complementary polarization states of the polarization conversion performed analog modulation bistable separating pitch variation component light intensity, while the function linearization bistable polarization modulation determined pitch in the first form as a function of The inverse of the nonlinearity function bistable polarization pitch modulation in her first version: , Which is defined as the aggregate results of the quotient of the average time of calibration values ​​of the pitch component of the light intensity in the left formation zone to the average time the calibration values ​​of the intensity of the pitch component light flux forming a right zone: where . When applied to the control input of the bistable polarization modulator calibration PWM signal with linearly varying pulse width and linearization function separatory bistable polarization modulation in its second , Defined as the embodiment of the set of quantities, each of which is the inverse nonlinearity to the corresponding value bistable polarization separating function in its second modulation , Version: Which is the set of results the quotient of the time averaged calibration values ​​of the pitch component of the luminous flux intensity in the left formation zone to the average time the calibration values ​​of the intensity of the pitch component light flux forming a right area divided by time-averaged , Calibration signal values a monotonically-changing pulse duration: where .;17. The method according to claim 2, characterized in that the summing and / or separating the modulation is performed by a combination of analog and bistable or multistable modulation characteristics of luminous flux.;18. An apparatus for forming and observing stereoscopic images with the maximum spatial resolution, comprising: a source of stereo video, optically connected between an optical source and an electrically controlled optical unit comprising arranged in series on the same optical axis addressable by M rows and N columns section of optical combiner, addressable by M rows and N columns in this section of the optical encoder and addressable by N column section spatially selective optical decoder, and first and second functional units, the outputs of which are connected to the control inputs of the sections of the optical combiner and a section of the optical encoder, respectively, and input - to the corresponding outputs stereo video source, wherein the aperture element mn-section optical combiner optically coupled to the aperture element mn-section of an optical encoder, and adjacent (2i-1) th and 2i-x columns optical encoder section and in the adjacent (2k-1 ) -x and x 2k-section columns spatially selective optical decoder initial optical state of the working medium are mutually complementary between adjacent columns, the axis of symmetry of one of the zones . forming a common line of intersection of a group of N planes, of which the first N / 2 planes passing through the axis of symmetry of the odd (2k-1) th column section of the optical encoder and odd symmetry axis section 2i-x columns spatially selective optical decoder, while the remaining N / 2 planes passing through the axis of symmetry of the even column 2k-x section of the optical encoder and odd symmetry axis (2i-1) th column sections spatially selective optical decoder, and the other axis of symmetry of zones . forming a common line of intersection of the other group of N planes, of which the first N / 2 planes passing through the axis of symmetry of the even 2k-x section of the column of the optical encoder and axis of symmetry of the even 2i-x section columns spatially selective optical decoder, and the remaining N / 2 planes pass through the axis of symmetry of the odd (2k-1) th column of the optical encoder section and odd symmetry axis (2i-1) th column sections spatially selective optical decoder, where n = 1, 2, ..., N, m = 1, 2, ..., N, i = 1, 2, ..., N, k = 1, 2, ..., N, characterized in that the electrically controlled matrix-addressable optical unit is adapted to mutual permutation along the optical axis of the sections of optical combiner, the optical encoder and spatially-selective optical decoder and / or their components, which are formed respectively as the summing of the optical modulator, the divider of the optical modulator and the optical selector, each of which contains at least one working medium layer with two mutually complementary arbitrary optical conditions and arbitrary unequivocal characteristic transition between these states, the first functional unit is configured to transfer function TΣ, Which is the inverse of the transfer function fch_1 first optoelectronic channel: , The entrance of which is the control input of the summing optical modulator, and the optical output of the first optoelectronic channel is any of the zones . forming the second electronic functional unit is configured to transfer function TΞ, Which is the inverse of the transfer function fch_2 second optoelectronic channel: , The entrance of which is the control input of the divider of the optical modulator, and the optical output of the second optoelectronic channel are both zones of the aperture . forming, with the values ​​of the transfer functions of the first and second optoelectronic channels correspond to values ​​of the optical intensity.;19. The apparatus of claim 18, wherein the optical modulator summing and / or dividing optical modulator and / or an optical selector includes at least one auxiliary or auxiliary focusing compensatory or auxiliary optical polarizing layer, or a combination of auxiliary optical layers , each of which is fixed or controlled, transfer functions which are spectrally-dependent or dependent diffractive or refractive-dependent members contained in the values ​​of the transfer functions of the first and second optoelectronic channels.
机译:1。一种形成立体观察和最大空间分辨率的方法,包括以下步骤:在由M行和N列寻址的矩阵产生光源的光的光源中,对所述求和的第一光学调制器进行调制。根据左视图和右视图的图像的数量和亮度的第mn个元素的总和,第一个光学调制器的第mn个第m个元素,其中m = 1,2,...,M,n = 1 ,1,...,N,使用第二光学调制器的M行和N列可寻址的矩阵,根据代数关系的非线性函数在第二光学调制器的第mn个元素中对调制光波进行编码通过具有相互互补的光学解码参数的第一和第二光学分析仪在左右角的值和x mn亮度图像元素之间形成强度和Equal值的第一和第二光束左右形成窗口中的左视图和右视图的x mn个亮度图像元素,与左右观察窗口光学耦合,以观察立体图像的左右角度,其特征在于借助矩阵通过对M行和N列进行光调制器的均匀作用,引起光波强度的均匀调制,幅度相等,并且左右窗口形式的光波强度变化的符号相同,通过调制通过调制光波的其他物理特性-传播方向或会聚或发散角或偏振态或相位值的光谱特性或通过调制剩余组合来调制的光波强度或间接求和光波在均匀作用的光调制器的第mn个元素中的物理特性o其控制输入补偿求和信号,其幅度与函数ΛΣ线性化求和调制的值成正比,使用由M行和N列的差分光调制器寻址的矩阵作用,引起光波强度的差异调制,幅度形式相同,但符号相反,左右窗口形式的光波强度变化,通过光波强度的调制直接分离调制,或者通过调制光波的其他物理特性进行间接分离调制-传播方向或会聚角或散度或光谱特性或偏振态的大小,或相位量,或者通过调制光的其他物理特性组合光调制器的第mn个元件中的光波是微分作用,以其控制输入为准以一个与音调调制的函数ΛΞ线性化的值成正比的幅度对信号分割进行初始化,并使用第一和第二光学转换器在左右窗口形式中生成调制光强度具有相互补充的参数转换螺距调制,具有相同参数的转换求和调制以及具有与透射光强度的直接螺距分量和直接分量相同的光传输参数。2。 2.根据权利要求1所述的方法,其特征在于,馈送补偿信号是对第一特定实施例求和,该信号的振幅与函数ΛΣ线性化成正比,该幅度在其第一求和调制中是特定实施例。从左视图和右视图的第mn个像素的工作亮度值中获取的光量:或者在第二个特定实施例中将补偿信号相加,其幅度与亮度值mnm的乘积成正比函数ΛΣ的左视图和右视图的像素求和使其第二调制线性化,这是一个特定的实施例:将分割它的补偿信号馈入第一实施例,其幅度与值成正比在她的第一个音调调制中,函数ΛΞ线性化的一个特定实施例,取左,右视图的亮度值mn-m个图像元素的比率值:或补偿div在其函数ΛΞ线性化的函数中,其振幅直接与左右视图的mn-m个图像元素中的亮度值之间的乘积成正比的幅度反馈到其第二特定实施例第二音调调制特定实施例:其中函数ΛΣ线性化在其第一求和调制特定实施例中确定一个函数作为校准函数的逆,求和非线性在其第一个特定实施例中的函数:然后对函数ΛΣ求和线性化其第二个调制的特定实施例,确定其值是特定实施例中第二加法器中调制的校准函数F Σ非线性的值的倒数:Λ函数Ξ线性化在她的第一音高调制中实施例,作为函数确定校准函数F Ξ音调调制非线性度在其特定实施例中的逆:并且函数ΛΞ线性化音调调制在其第二特定实施例中实施例,确定为一个函数,其值是其第二个特定实施例中的基音调制的校准函数的非线性值的倒数:,具有校准函数summi在第一个特定实施例中,ng调制非线性等于任何一个窗口的输出处的总校准值均匀调制的分量光强度。形成:当应用到光调制器的控制输入端时,其均匀作用是线性地改变校准信号求和调制和校准函数F Ξ求和非线性,其第二调制是一个特定的实施例,是序列的比率在任何窗口的输出处均匀校正的分量光强度的校准值的确定。在其特定的实施例中,校准函数F Ξ音调调制非线性在其第一个特定实施例中对应于振幅单调变化的校准信号求和调制的一系列值的形成:校准值集上的左窗形成的差值调制分量的光强度右窗形成的光通量的强度值:当应用于光调制器的控制输入时是线性改变校准信号的音调调制和校准函数F Ξ的非线性作用分离非线性是其第二调制的一个特定实施例,是左侧总校准值与差分调制分量光强度之比窗口中形成一组校准值的差分调制分量t窗口的形成分为多个对应的值,单调变化的幅度校准信号的音调调制:。; 3。 2.根据权利要求1所述的方法,其中,所述补偿信号被馈给以求和第一特定实施例,所述信号的幅度与所述特定实施例的第一求和调制中的函数Λ线性化成正比,该取自左视图和右视图的第mn个像素的工作亮度值:或者在第二个特定实施例中将补偿信号相加后得出的幅度与该像素的亮度值第mn个像素的乘积成正比函数ΛΣ的左视图和右视图求和线性化其第二调制的一个特定实施例:,将其分割的补偿信号以与正弦波的值成正比的幅度馈入第一实施例。在一个特定的实施例中,在她的第一个音调调制中对函数ΛΞ线性化,采用比率值mn-m个图像元素的左,右视图亮度:或补偿馈入其第二特定实施例在其第二音高调制中,其振幅与函数ΛΞ线性化的左右视图的mn-m个图像元素中的mn-m个图像元素的关系亮度值的乘积成正比实施例:其中,函数ΛΣ linearization在其第一求和调制特定实施例中,确定为函数校准函数的平方的逆函数在其第一特定实施例中求和调制非线性:并且函数Λ求和线性化其第二调制的特定实施例,确定其值是校准函数F Σ非线性在第二加法器中的值的倒数的函数特定实施例:在她的第一音高调制中的Λfunction Ξ线性化特定实施例,确定作为函数的校准函数F Ξ音高模量的逆第一个特定实施例中的非线性:在第二个特定实施例中,函数ΛΞ线性化音调调制,确定为一个函数,其值是其第二个特定实施例中的基音调制的校准函数的非线性值的倒数:,在第一个特定实施例中用校准函数求和调制非线性的总和是等于在任何一个窗口的输出处的总校准值均匀调制的分量光强度。形成:当应用到光调制器的控制输入端时,其均匀作用是线性地改变校准信号求和调制和校准函数F Ξ求和非线性,其第二调制是一个特定的实施例,是序列的比率在任何窗口的输出处均匀校正的分量光强度的校准值的确定。在其特定的实施例中,校准函数F Ξ音调调制非线性在其第一个特定实施例中对应于振幅单调变化的校准信号求和调制的一系列值的形成:校准值集上的左窗形成的差值调制分量的光强度右窗形成的光通量的强度值:当应用于光调制器的控制输入时是线性更改校准信号音高调制的校准作用和校准函数F Ξ的非线性分离非线性调制的一个特定实施例,是左侧的轨距差调制分量光强度的合计值之比窗口中形成一组校准值的差分调制分量,右边的光束强度窗口形成分为多个对应的值,单调变化的幅度校准信号的音调调制:。; 4。 2.根据权利要求1所述的方法,其特征在于,函数值Λ求和线性化除法调制相关信号值和/或函数值ΛΞ线性化音调调制相关的求和信号值; 5。 2.根据权利要求1所述的方法,其特征在于,所述求和是通过使用实光学振幅调制器对光束强度调制进行调制来进行的,并且通过使用任意相位调制器来调制光束的偏振态来进行分离光学调制。偏振特性是明确的,在第一和第二偏振转换器具有相互互补的偏振参数的光束分离分量强度的调制中,实现了两个相互互补的光偏振相态之间的过渡和变调。 2.根据权利要求1所述的方法,其特征在于,光源使用实光学幅度调制器产生具有第一光谱的光束,该总和通过对光强度进行调制而进行的幅度调制相加,所述调制以与光谱调制分离的形式进行。当通过第一和第二频率光学分析仪将其控制输入上的电压从第一值更改为第二值时,通过频率光学调制器从第一范围到第二范围的过渡分离,进行转换光谱螺距调制到分离分量光强度,其中,第一和第二频率分析仪的光谱特性与第一和第二光谱相对应; 7 .. 2.根据权利要求1所述的方法,其特征在于,通过划分所述衍射光学调制器改变所述光束在所述第一横向方向上的偏转角,来执行具有由所述衍射光学调制器加法器相加衍射调制而形成的准直光束的光源。通过改变在第二横向方向上的光偏转角来执行分离衍射调制,并且通过在两个相互正交的横向方向上的不对称,在与光通量对应的第一横向选择分量中进行zhalyuznogo光学转换器。在左,右地层窗口中以及第二横向方向上的衍射调制的总和-与左,右地层窗口之间的衍射调制的间距相对应的部分光通量的分配。权利要求1的方法,其中使用实光学调制器幅度调制的所述模拟是通过将由偏振调制器对模拟光强度的调制相加而得到的,双稳态双稳态偏振分离是由第一和第二偏振转换器在两个相互互补的偏振态之间调制脉冲宽度调制而进行的在偏振态相互互补的状态下进行偏振调制的模拟调制双稳态分离基音变化分量的光强度,而函数线性化双稳态偏振调制在第一个形式中确定基音为函数的函数。版本:,其定义为左形成窗口中光通量强度的螺距分量的校准时间的平均时间与校准窗口中的校准时间的平均时间之商的合计结果音高分量的强度是在右形成窗中的光束:。当将其应用于第二实施例中具有线性变化的脉冲宽度和线性化功能的双稳态偏振调制器校准PWM信号的控制输入时,将分离双稳态偏振调制定义为一组量,每个量都是对应于双稳态值的逆非线性偏振分离函数在其第二调制版本中:这是结果集,即左形成窗口中光束强度的音高分量的音高分量的时间平均校准值与该值的平均时间的商。形成右窗口的音高分量光束的强度除以时间平均值校准信号后,单调变化的脉冲持续时间为:9。 8.根据权利要求1所述的方法,其中,通过对光通量进行模拟和双稳态或多稳态调制特性的组合来执行所述求和和/或分离所述调制。一种形成立体观测和最大空间分辨率的方法,包括以下步骤:光源通过M行和N列可寻址的矩阵产生光波,调制求和的第一光学调制器在光波mn中执行根据左视图和右视图的数量和x mn图像元素的数量之和,使用可寻址M行和N列的第二光学调制器的矩阵对第一光学调制器的第th个元素进行编码。根据左和右视图的值与x mn亮度图像元素之间的代数关系的非线性函数对第二光学调制器的光波第mn个元素进行调制,设置相互互补的光学元素的初始值第二个光学调制器的相邻列和2i-x(2i-1)-x列中的调制参数,其中m,n,i = 1、2,...,N到N个列(由空间周期寻址) dic光学分析仪通过设置与2k-x和(2k-1)-x列相关的参数的互补光学分析进行空间周期性光学分析仪,其中k = 1,2,...,N它们形成第一组和第二组光在左右形成区域中具有总强度值,等值和左视图和右视图的x mn图像元素的光束,其中形成区域中的一个区域指向第一组N组光束,其中前N / 2个穿过第二个光学调制器的N / 2个偶数2i-x列和N / 2个偶数2k-x列空间周期性光学分析仪,其余N / 2个光束通过第二个光学调制器的第N / 2个奇数(2i-1)列和第N / 2个奇数(2k-1)-x列空间周期性光学分析仪,以及在直接形成的其他区域中,第二组N光束,其中的第一个N / 2通过第二个光学模数的第N / 2个奇数(2i-1)列托和N / 2个偶数列2k-x空间周期性光学分析仪,其余的N / 2光束通过N / 2个奇数列x 2i光学调制器和第二个N / 2个奇数(2k -1)在空间周期性光学分析仪的第一列,分别观察左和右角,分别与左和右形成区光学耦合的左立体和右监视区,其特征在于借助矩阵-由M行和N列寻址的光调制器通过调制光波强度的大小直接求和调制或通过调制光波的其他物理特性进行间接求和调制-传播方向或幅度会聚或发散或光谱特性或通过第mn个光调制器元件中的光波的偏振状态或相位调制量或其他物理特性的组合,通过将其控制输入馈入一个补偿信号,使该信号总和与该信号成正比,从而产生均匀作用函数ΛΣ线性化求和调制的值,使用M行和N列矩阵寻址的光调制器,通过光波强度的调制直接分离调制或间接分离来进行微分作用通过调制光波的其他物理特性进行调制-传播方向或会聚角或散度或光谱特性的大小,或者偏振态或相位值,或者通过调制组​​合在mn-具有相互补充值的光调制器微分作用设置的第n个元素在i = 1、2,...,N的光调制器微分作用的相邻第2i-x和第(2i-1)列中的相关性能,并将其直接馈入振幅的补偿信号除法的控制输入与函数ΛΞ线性化音调调制成比例,第一组和第二组N调制的光束强度可通过N列空间周期性光学转换器寻址,其特征是相互补充的参数将转换音调调制为其相邻的2k-x和(2k-1)-x列,相同的参数转换求和调制,相同的光传输参数(作为直接螺距分量)和所有N列的光通量强度求和的直接分量空间周期性光转换器; 11。 3.根据权利要求2所述的方法,其中,所述补偿信号被馈给以求和第一特定实施例,所述信号的幅度与所述特定实施例的第一求和调制中的函数Λ线性化成正比,该取自左视图和右视图的第mn个像素的工作亮度值:或者在第二个特定实施例中将补偿信号相加后得出的幅度与该像素的亮度值第mn个像素的乘积成正比函数ΛΣ的左视图和右视图求和线性化其第二调制的一个特定实施例:,将其分割的补偿信号以与正弦波的值成正比的幅度馈入第一实施例。在一个特定的实施例中,在她的第一个音调调制中对函数ΛΞ线性化,采用亮度值mn-m个图像元素左右视图的比例值:或补偿馈送到其的分频信号第二特定实施例在其第二音高调制中,其振幅与函数ΛΞ线性化的左右视图的mn-m个图像元素中的mn-m个图像元素的关系亮度值的乘积成正比实施例:其中,函数ΛΣ linearization在其第一求和调制特定实施例中,确定为函数校准函数的平方的逆函数在其第一特定实施例中求和调制非线性:并且函数Λ求和线性化其第二调制的特定实施例,确定其值是校准函数F Σ非线性在第二加法器中的值的倒数的函数特定实施例:在她的第一音高调制中的Λfunction Ξ线性化特定实施例,确定作为函数的校准函数F Ξ音高模量的逆第一个特定实施例中的非线性度:并且第二个特定实施例中的函数ΛΞ线性化音调调制,确定为一个函数,其值是非线性值的倒数音调调制的校准函数在其第二个特定实施例中的特征:虽然校准函数F Σ在其第一个特定实施例中求和调制非线性度的总和等于统一校准的分量光的总校准值任何区域的输出强度。形成:当应用到光调制器的控制输入端时,其均匀作用是线性地改变校准信号求和调制和校准函数F Ξ求和非线性,其第二调制是一个特定的实施例,是序列的比率在任何区域的输出处均匀校正的分量光强度的校准值。形成一系列对应于幅度单调变化的校准信号求和调制的值的序列:在第一个特定实施例中,校准函数F pitch 的音调调制非线性等于该组校准值的差调制分量的商,即在该组的左侧区域形成的光强度校准值差分调制分量在正确区域形成的光强度:当应用于光调制器的控制输入端时,是线性改变校准信号间距调制和校准函数F Ξ分离非线性是其第二调制的一个特定实施例,是总校准值与差分调制分量之比与左侧区域中的光强度之比,形成一组校准值与差分调制分量之比即是右侧区域形成分为多个对应值的单调变化幅度校准信号的音调调制:。; 12。 3.根据权利要求2所述的方法,其特征在于,将与线性化划分调制相关的信号值和/或函数值ΛΞ线性化相加的函数值^ Σ音调调制相关的求和信号值; 13。 3.根据权利要求2所述的方法,其特征在于,所述求和是通过使用实光学振幅调制器对光束强度调制进行调制来进行的,通过使用任意的相位调制器来调制光束的偏振态来进行分离光调制。偏振特性是明确的,两个互为互补的偏振参数在第一和第二偏振转换器对光通量分离分量强度的调制中进行。 3.根据权利要求2所述的方法,其特征在于,光源使用实光学振幅调制器生成具有所述第一光谱的光束,所述光源对通过调制所述光强度而进行的振幅调制相加,以与所述光谱调制分离的方式进行调制。当通过第一和第二频率光学分析仪将其控制输入上的电压从第一值更改为第二值时,通过频率光学调制器从第一范围到第二范围的过渡分离,进行转换光谱螺距调制到分离分量光强度,其中,第一和第二频率分析仪的光谱特性与第一和第二光谱相对应; 15 .. 3.根据权利要求2所述的方法,其特征在于,光源具有由强衍射光学调制器加法器形成的准直光束,该求和器通过对所述衍射光调制器进行划分来改变所述光束在所述第一横向方向上的偏转角而进行的衍射调制相加。通过改变第二横向方向上的光偏转角并在两个相互正交的横向方向上使用非对称光进行zhalyuznogo分离衍射调制,在对应于衍射调制总和的第一横向方向光通量分量中进行光传输在形成的左侧和右侧区域中以及在第二横向方向上-部分光束的分配与左侧和右侧形成区域之间的衍射调制的间距相对应; 16。 3.根据权利要求2所述的方法,其中,通过使用由所述偏振调制器对所述两个相互互补的偏振态之间的脉冲宽度调制的调制而进行的双稳态双稳态偏振分离对所述偏振调制器的模拟光强度调制求和,来执行使用实光学调制器幅度调制的所述模拟。具有偏振转换的相互互补的偏振态的第一和第二偏振转换器执行模拟调制双稳态分离音高变化分量的光强度,而函数线性化双稳态偏振调制确定第一形式的音高作为非线性函数双稳态偏振的函数她的第一个版本中的音调调制:,其定义为左形成区中光强度的音调分量的平均校准时间与校准值的平均时间之商的平均结果的合计结果形成正确区域的音高分量光束强度:当应用于双稳态偏振调制器校准PWM信号的控制输入时,其第二个线性变化的脉冲宽度和线性化功能分离双稳态偏振调制被定义为量集的实施方式,每个都是其第二调制中对应值双稳态偏振分离函数的逆非线性,版本:这是一组结果,光通量强度的俯仰分量的时间平均校准值的商左形成区的平均时间为形成右区域的音调分量光束强度的校准值除以时间平均后的值,校准信号的值是单调变化的脉冲持续时间:其中。; 17。 3.根据权利要求2所述的方法,其特征在于,所述调制的求和和/或分离通过光通量的模拟和双稳态或多稳态调制特性的组合来执行。一种用于形成和观察具有最大空间分辨率的立体图像的设备,包括:立体视频源,其光学连接在光源和电控光学单元之间,所述电控光学单元包括串联布置在可被M行和N列寻址的同一光轴上光学组合器部分,可在该光学编码器的此部分中以M行和N列寻址,并且可通过N列空间选择光学解码器部分以及第一和第二功能单元寻址,其输出连接到该部分的控制输入光学组合器的一部分和光学编码器的一部分,分别输入到相应的输出立体声视频源,其中光圈元件mn-section光学组合器光学耦合到光学编码器的光圈mn-section,并且相邻第(2i-1)和第2i-x列光学编码器部分以及相邻的(2k-1)-x和x 2k截面列spati选择性光解码器的工作介质的初始光学状态在相邻列之间是区域之一的对称轴彼此互补。形成一组N平面的公共相交线,其中第一个N / 2平面穿过光学编码器的第奇数(2k-1)列部分的对称轴和奇对称轴部分2i-x列空间选择性光解码器,而其余N / 2个平面穿过光编码器的偶数列2k-x部分的对称轴和第奇数对称轴(2i-1)列空间选择性光解码器,区域的其他对称轴。形成另一组N个平面的公共交线,其中第一个N / 2平面穿过光学编码器列的偶数2k-x截面的对称轴和偶数2i的对称轴-x节列在空间上选择光学解码器,其余N / 2个平面在空间上穿过光编码器节的第奇数(2k-1)列和第奇数对称轴(2i-1)的对称轴选择性光学解码器,其中n = 1,2,...,N,m = 1,2,...,N,i = 1,2,...,N,k = 1,2,... ,N,其特征在于,电控矩阵可寻址光学单元适于沿着光学组合器,光学编码器和空间选择性光学解码器和/或它们的组件的部分的光轴相互置换,它们分别形成为光调制器,光调制器的除法器和光选择器的总和,每个包含至少一个工作介质层具有两个相互互补的任意光学条件,并且在这些状态之间具有任意明确的特性转换,第一功能单元配置为传递函数T Σ,它是传递函数f < Sup> ch_1 第一光电通道:,其入口是求和光调制器的控制输入,并且第一光电通道的光输出是任何区域。形成第二电子功能单元的装置构造为传递函数T Ξ,它是第二光电通道的传递函数f ch_2 的逆函数:,其入口是控件光调制器的除法器的输入端和第二光电通道的光输出端都是孔径的两个区域。用第一和第二光电通道的传递函数的值形成对应于光强度的值; 19。 19.根据权利要求18所述的设备,其中,所述光学调制器求和和/或除光学调制器和/或光学选择器包括至少一个辅助或辅助聚焦补偿或辅助光学偏振层,或辅助光学层的组合,其中每个是固定或受控在第一和第二光电通道的传递函数的值中包含的传递函数是光谱相关或相关的衍射或折射相关成员。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号