首页> 外国专利> Quantum wire array field effect (power) transistor QFET (especially magnetic - MQFET, but also electrically or optically driven) at room temperature, based on polyacetylene-like molecules

Quantum wire array field effect (power) transistor QFET (especially magnetic - MQFET, but also electrically or optically driven) at room temperature, based on polyacetylene-like molecules

机译:室温下基于类聚乙炔分子的量子线阵列场效应(功率)晶体管QFET(特别是磁性-MQFET,也可以是电或光驱动)

摘要

One, several or very many parallel quantum wires, e.g. especially 1-dimensional quantum-conducting heavy ion trackstrue quantum wires at room temperaturesee similarly EP1096569A1 [1] and [2], or also perhaps SWCNTs, vertically directed or also slightly tiltedup to about 45 degreesarranged in a 2 dimensional plane, which as a 2-dimensional array interconnect the source and drain contacts of the here invented transistor, are modulated with respect to their quantum-mechanical conductivity via the strength of an applied electric or magnetic field [3], which is homogenous or variable in space locally across the 2 dimensional quantum wire array. The I-V curves of such quantum wires are measured via a double resonant tunnelling effect which allows identifying quantum effects at room temperature. A true quantum wire is characterized by quantized current steps and sharp current peaks in the I-V (Isd versus Usd, not just Is a versus Ugate) curve. In the ideal case the quantum wires consist of straight polyacetylene-reminiscent molecules of the cumulene form ( . . . CCCCCC . . . ) or of the form ( . . . CCCCCC . . . ) which are generated by the energy deposition during the single swift (heavy) ions' passage through the insulating DLC-layer. The switching time of the transistor is determined practically solely by the switching time of the magnetic field (time constant of the magnetic gate), the ohmic resistance of the source-drain connection via the quantum wire array is in the conducting state practically zero. The controlling gate-magnetic field having a component normal to the quantum wires can be generated by a small controlling current through some inductance (embodiment 1, FIG. 7, 8, 9, 10, 11) or also by a suitable (locally variable) direction of the magnetization in a ferromagnetic thin layer (e.g. Fe, Co, Ni, etc.)embodiment 2, FIG. 8, 9, 10, 11, or also for example in a thin layer consisting of metallic (ferromagnetic) nanoparticles (e.g. Fe, Co, Ni, etc.) or also current-less through an electrostatically charged tip (embodiment 3a analogous to FIG. 7) or via a suitable polarization of a ferroelectric thin layer or liquid crystals/nanoparticles in an electric fieldembodiment 3b, as in FIG. 8, 9, 10, 11. The quantum wire transistor can also be switched/controlled optically. Applications in the case of very large arrays (1010/cm2 parallel QWs) would be a power transistor, in the case of very small arrays (single or a few parallel QWs) it would be non-volatile information storage, where due to the particular properties of 1-dimensional quantized conductivity a multi-level logic can be realized. In the case of optical switching/controlling of the quantum wire transistor, an extremely highly resolving 2-dimensional array of photodetectors is envisionable, where in that case the single QWs would have to be electrically connected one by one, e.g. reminiscent of the concept of a Nand- or Nor-Flash-Ram, whose size scale in turn is supposedly determining the limit of the achievable area density of the pixels. A feasible concept for a read-out matrix for possible applications of these quantum field effect transistors as a non-volatile memory chip or as a ultrahighly resolving light pixel detector array is reminiscent of the concept of a Nor-Flash-Ram. The concept is comprising a crossed comb structure of nanometric electrically conducting conventional leads on either side of the DLC-layer embedding the vertical quantum wires as shown in FIG. 23 each crossing on average being interconnected by one or a few ion track quantum wires. A feasible concept for a wiring matrix writing onto the quantum field effect transistors for a non-volatile memory chip is shown in FIG. 11 comprising a meander-shaped circuitry.
机译:一,几或很多平行量子线,例如尤其是一维量子导电重离子在室温下跟踪真实的量子线,类似地请参见EP1096569A1 [1]和[2],或者也可能是SWCNT,它们垂直定向或也稍微倾斜到大约45度,并排列在二维平面中,即2三维阵列互连此处发明的晶体管的源极和漏极触点,并通过施加的电场或磁场的强度对其量子力学导电性进行调制[3],该电场在整个2层的空间中是均匀的或可变的维量子线阵列。此类量子线的I-V曲线是通过双共振隧穿效应测量的,该效应可以识别室温下的量子效应。真正的量子线的特征在于I-V曲线中的量化电流阶跃和尖锐的电流峰值(Isd对Usd,而不仅仅是Is对Ugate)。在理想情况下,量子线由直聚乙炔组成,呈直角聚对亚乙二烯形式(……CCCCCC……)或形式(……CCCCCC……),这些分子是由单次能量沉积产生的。快速(重)离子通过绝缘DLC层。晶体管的切换时间实际上仅由磁场的切换时间(磁性门的时间常数)决定,经由量子线阵列的源极-漏极连接的欧姆电阻实际上处于导通状态为零。具有垂直于量子线的分量的控制栅磁场可以通过流过某种电感的较小控制电流产生(实施例1,图7、8、9、10、11),也可以通过合适的(局部变量)产生在铁磁薄层(例如Fe,Co,Ni等)实施例2中的磁化方向。如图8、9、10、11所示,或者也可以是例如由金属(铁磁)纳米粒子(例如Fe,Co,Ni等)组成的薄层,或者也可以是无电流通过带静电的尖端(类似于图7的实施例3a)如图7所示,或者通过电场实施例3b中的铁电薄层或液晶/纳米粒子的适当极化。 8、9、10、11。量子线晶体管也可以进行光学切换/控制。在非常大的阵列(> 1010 / cm2并行QW)中的应用将是功率晶体管,在非常小的阵列(单个或几个并行QW)中的应用将是非易失性信息存储,一维量化电导率的特定属性可以实现多级逻辑。在量子线晶体管的光学开关/控制的情况下,可以设想到分辨率非常高的二维光电检测器阵列,在那种情况下,单个QW必须被一个一个地电连接,例如,一个个。让我们想起了Nand-Flash或Nor-Flash-Ram的概念,后者的大小比例又决定了像素可达到的区域密度的极限。用于这些量子场效应晶体管作为非易失性存储芯片或超高分辨率的光像素检测器阵列的可能应用的读出矩阵的可行构思让人联想到Nor-Flash-Ram的概念。该概念包括在DLC层的任一侧上嵌入垂直量子线的纳米导电常规引线的交叉梳状结构,如图2所示。 23个平均每个交叉由一根或几根离子轨道量子线互连。在图3中示出了用于将布线矩阵写入非易失性存储芯片的量子场效应晶体管的可行概念。图11包括曲折形电路。

著录项

  • 公开/公告号DE102009041642A1

    专利类型

  • 公开/公告日2011-03-31

    原文格式PDF

  • 申请/专利权人 OHNESORGE FRANK;

    申请/专利号DE20091041642

  • 发明设计人

    申请日2009-09-17

  • 分类号H01L29/775;H01L43/08;H01L31/028;H01L31/042;H01L21/66;

  • 国家 DE

  • 入库时间 2022-08-21 17:47:43

相似文献

  • 专利
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号