首页> 外国专利> Tera- AND SOLID GHz Miniature Spectrometer

Tera- AND SOLID GHz Miniature Spectrometer

机译:Tera和SOLID GHz微型光谱仪

摘要

1. Spectrometric device, comprising:;a solid structure adapted to receive the incident electromagnetic radiation, said incident electromagnetic radiation has a spectrum; wherein said structure has an adjustable charge carrier layer, characterized by a plurality of parameters;;at least one plasmon resonator in said regulated charge carrier layer;;at least one defect in said regulated charge carrier layer;;at least first and second contacts to said adjustable charge carrier layer, wherein said contacts are provided on said adjustable charge carrier layer and spaced apart;;a measuring device for measuring the response of said solid structure to said incident electromagnetic radiation, wherein said response is measured between said first and second contacts, and wherein said response provides information about said spectrum of said incident electromagnetic radiation; and;controlled control device for controlling at least one of said plurality of parameters.;2. A method for measuring the electromagnetic spectrum, said method comprising the steps of:;providing a solid structure, wherein said structure has a solid-state carrier adjustment layer, said carrier layer having at least one defect and at least one plasmon resonator, wherein said carrier layer characterized by a plurality of parameters;;receive incident electromagnetic radiation, characterized by a first frequency spectrum and energy;;direct said electromagnetic radiation incident on said solid state structure;;convert said energy of said incident electromagnetic radiation energy in the at least one plasma waves, wherein said plasma is characterized by a wave of electromagnetic field and said flame wave oscillates at a second frequency and is distributed in at least one of said plasmonic resonators;;generating a signal using a non-linear response to at least one of said defects with respect of said plasmon electromagnetic field;;adjust at least one of said adjustable parameters of said carrier layer;;receive a plurality of said measurement signals for different values ​​of at least one of said parameters;;determining a relationship between at least one of said parameters and said signal value; and;determining said first frequency range of said incident electromagnetic radiation on the basis of said relationship.;3. The apparatus of claim 1, wherein said response is a photovoltage.;4. The apparatus of claim 1, wherein said response is a photocurrent.;5. The apparatus of claim 1, wherein said response is photocapacitance.;6. The apparatus of claim 1, wherein said response is fotoinduktivnost.;7. The apparatus of claim 1, wherein said response is a photoresistor.;8. The apparatus of claim 1, wherein said adjustable parameter is the density of carriers from said carrier layer.;9. The apparatus of claim 1, wherein said adjustable parameter is a dielectric layer surrounding said carrier.;10. The apparatus of claim 1, wherein said adjustment parameter is the intensity of the magnetic field from an independent source and the field penetrates into the layer of charge carriers.;11. The apparatus of claim 1, wherein said adjustment parameter is the effective mass of the carriers from said carrier layer.;12. The apparatus of claim 1, wherein said adjustable parameter is the size of the plasmon resonator.;13. The apparatus of claim 1, wherein said at least one defect is implemented as one of a portion etched, density nonuniformity carrier, narrowing or widening, a metal layer (e.g., deposited on the structure), impurity doping, carrier mobility defect charge, the defect of the dielectric environment, the structural defect.;14. The apparatus of claim 1, wherein the plurality of periodically arranged in a space of controlled plasmonic resonators introduced into said carrier layer.;15. The apparatus of claim 1, wherein the plurality of periodically disposed in the space controlled plasmonic resonators introduced into said carrier layer.;16. The apparatus of claim 1, wherein the plurality of contacts to said additional carrier layer is provided in addition to said first and second contacts.;17. The apparatus of claim 1 wherein more than one spectrometer is implemented in a single solid structure.;18. The apparatus of claim 1, wherein said solid-state structure comprises GaAs / AlGaAs heterostructure, where Ga is gallium, As is arsenic and Al is aluminum.;19. The apparatus of claim 1, wherein said solid-state structure is one of: a silicon MOSFET structure, InAs structure or Si / Ge structure where Si is silicon, In is indium, As is arsenic and Ge is germanium.;20. The apparatus of claim 1, wherein said carrier layer is formed as a single quantum well.;21. The apparatus of claim 1, wherein said carrier layer is designed as a double quantum well.;22. The apparatus of claim 1, wherein said carrier layer is designed as a superlattice comprising a plurality of quantum wells.;23. The apparatus of claim 1, wherein said carrier layer is formed as a heterojunction.;24. The apparatus of claim 1, wherein the charge carriers in said layer when moving carrier is given the opportunity to move in more than one dimension.;25. The apparatus of claim 1, wherein said incident radiation is directed to a solid structure of said at least one of a lens, the aperture of the waveguide and the waveguide.;26. The apparatus of claim 1, further comprising a device for cooling said solid-state structure.;27. The method of claim 2, wherein at least one of these defects is the boundary of said rectifier and a plasmon resonator.;28. The method of claim 2, wherein the rectifying a defect at a distance from said at least one plasmon resonator.;29. The method of claim 2, wherein said signal is a photovoltage value.;30. The method of claim 2, wherein said signal represents the value of the photocurrent.;31. The method of claim 2, wherein said signal is a value photocapacitance.;32. The method of claim 2, wherein said signal is a value fotoinduktivnosti.;33. The method of claim 2, wherein said signal represents the value of the photoresistor.;34. The method of claim 2, wherein said adjustable parameter is the density of carriers from said carrier layer.;35. The method of claim 2, wherein said adjustable parameter is a dielectric layer surrounding said carrier.;36. The method of claim 2, wherein said adjustable parameter is the intensity of the magnetic field from an independent source and the field penetrates into the layer of charge carriers.;37. The method of claim 2, wherein said adjustable parameter is the effective mass of the carriers from said carrier layer.;38. The method of claim 2, wherein said adjustable parameter is the size of the plasmon resonator.
机译:1.一种光谱测定装置,包括:适于接收入射电磁辐射的固体结构,所述入射电磁辐射具有光谱;以及其中所述结构具有可调节的电荷载流子层,其特征在于多个参数;;在所述可调节电荷载流子层中的至少一个等离子体激元谐振器;;在所述可调节电荷载流子层中的至少一个缺陷;;至少与第一和第二接触所述可调节电荷载流子层,其中所述触点设置在所述可调节电荷载流子层上并隔开;;测量装置,用于测量所述固体结构对所述入射电磁辐射的响应,其中,所述响应在所述第一和第二触头之间测量,其中所述响应提供有关所述入射电磁辐射的所述光谱的信息;受控控制装置,用于控制所述多个参数中的至少一个。一种用于测量电磁频谱的方法,所述方法包括以下步骤:提供固体结构,其中所述结构具有固态载流子调节层,所述载流子层具有至少一个缺陷和至少一个等离子体激元谐振器,其中,以多个参数为特征的载流子层;接收以第一频谱和能量为特征的入射电磁辐射;将入射在所述固态结构上的所述电磁辐射定向;至少在所述入射电磁辐射能量中转换所述能量一种等离子体波,其中所述等离子体的特征在于电磁场波,并且所述火焰波以第二频率振荡并分布在至少一个所述等离子体共振器中;使用对至少一个的非线性响应产生信号所述缺陷相对于所述等离子体激元电磁场的分布;调整所述至少一个所述可调参数中的一个载体层;接收至少一个所述参数的不同值的多个所述测量信号;确定至少一个所述参数与所述信号值之间的关系;根据所述关系确定所述入射电磁辐射的所述第一频率范围。 2.根据权利要求1所述的设备,其中,所述响应是光电压。 2.根据权利要求1所述的设备,其中,所述响应是光电流。 7.根据权利要求1所述的设备,其中,所述响应是光电容。 7.根据权利要求1所述的设备,其中,所述响应是摄影。 7.根据权利要求1所述的设备,其中,所述响应是光敏电阻。 2.根据权利要求1所述的设备,其中,所述可调参数是来自所述载流子层的载流子的密度。 2.根据权利要求1所述的设备,其中,所述可调参数是围绕所述载体的介电层。 2.根据权利要求1所述的设备,其中,所述调整参数是来自独立源的磁场的强度,并且所述磁场渗透到电荷载流子层中。 2.根据权利要求1所述的设备,其中,所述调整参数是来自所述载体层的载体的有效质量。 13.根据权利要求1所述的设备,其中,所述可调参数是等离子体激元谐振器的尺寸。 2.根据权利要求1所述的装置,其中,所述至少一个缺陷被实现为以下部分之一:蚀刻的部分,密度不均匀的载流子,变窄或变宽,金属层(例如,沉积在所述结构上),杂质掺杂,载流子迁移率缺陷电荷,介电环境的缺陷,结构缺陷; 14。 15.根据权利要求1所述的装置,其中,所述多个周期地布置在引入到所述载体层中的受控等离子体共振器的空间中。 13.根据权利要求1所述的装置,其中,所述多个周期地布置在引入到所述载体层中的空间控制的等离子体谐振器中; 16.。 17.根据权利要求1所述的设备,其中,除了所述第一和第二接触之外,还提供了到所述附加载体层的多个接触。 18.根据权利要求1所述的设备,其中,在单个固体结构中实现一个以上的光谱仪。 19.根据权利要求1所述的装置,其中,所述固态结构包括GaAs / AlGaAs异质结构,其中Ga是镓,As是砷,Al是铝。 2.根据权利要求1所述的装置,其中,所述固态结构是以下之一:硅MOSFET结构,InAs结构或Si / Ge结构,其中Si是硅,In是铟,As是砷并且Ge是锗。如权利要求1所述的装置,其特征在于,所述载体层形成为单量子阱。21。 21.根据权利要求1所述的装置,其中,所述载体层被设计为双量子阱。 2.根据权利要求1所述的设备,其中,所述载体层被设计为包括多个量子阱的超晶格。权利要求1的设备;其中,所述载体层形成为异质结。; 24。 2.如权利要求1所述的装置,其特征在于,当移动载流子时,所述层中的电荷载流子有机会在一个以上的维度上移动。25。 2.根据权利要求1所述的设备,其中,所述入射辐射被引导到所述透镜,所述波导的所述孔和所述波导中的至少一个的固体结构; 26。 25.根据权利要求1所述的设备,其进一步包括用于冷却所述固态结构的装置。 3.根据权利要求2所述的方法,其中,这些缺陷中的至少一个是所述整流器和等离子体激元谐振器的边界。28。 30.根据权利要求2所述的方法,其中,在距所述至少一个等离子体激元谐振器一定距离处纠正缺陷; 29。 3.根据权利要求2所述的方法,其中,所述信号是光电压值。 3.根据权利要求2所述的方法,其中,所述信号表示光电流的值。如权利要求2所述的方法,其特征在于,所述信号是光电容值。32。 33.根据权利要求2所述的方法,其中,所述信号是值fotoinduktivnosti .; 33。如权利要求2所述的方法,其特征在于,所述信号代表光敏电阻的值。34。 3.根据权利要求2所述的方法,其中,所述可调参数是来自所述载流子层的载流子的密度。35。 3.根据权利要求2所述的方法,其中,所述可调参数是围绕所述载体的介电层。 3.根据权利要求2所述的方法,其中,所述可调参数是来自独立源的磁场的强度,并且所述磁场渗透到电荷载流子层中; 37。 3.根据权利要求2所述的方法,其中,所述可调参数是来自所述载体层的载体的有效质量。 3.根据权利要求2所述的方法,其中,所述可调参数是所述等离子体激元谐振器的尺寸。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号