首页> 外国专利> The control method motion of the spacecraft during landing in a predetermined area of ​​the surface of the planet

The control method motion of the spacecraft during landing in a predetermined area of ​​the surface of the planet

机译:航天器在行星表面预定区域着陆期间的控制方法运动

摘要

a spacecraft motion control method when landing in a predetermined area of ​​the planet's surface, comprising: a spacecraft input implementation into the atmosphere with the angle of attack α, corresponding to the maximum value of aerodynamic K, in the measurement current spacecraft values ​​of motion coordinates at the instants t, where i = 1,2, ..., n, in the process of the descent in the atmosphere, namely: V- spacecraft flight speed, θ- angle velocity vector of the spacecraft to the local horizon, ε- angle between projection vector of the spacecraft velocity and local local horizon parallel, r- distance between the center of the planet and the center of mass of the spacecraft, φi λ- geocentric latitude and longitude of the spacecraft sub-satellite point, respectively, ρ- density atmosphere at a height of spacecraft flying in determining η - the angle between the projection of the vector of the spacecraft velocity and vertical local horizon plane input apparatus in the atmosphere, ψ - the angular distance between the current position subsatellites th point of the spacecraft and the machine input plane into the atmosphere, establishing spacecraft γ roll angle determined according to the relation: gdeη - the angle between the projection of the velocity vector of the spacecraft to the local horizon and vertical spacecraft entrance plane into the atmosphere; ψ - angular distance between the current position of the spacecraft sub-satellite point and the entrance plane of the spacecraft into the atmosphere; K. balancing aerodynamic efficiency, determined by the angle of attack α; = 3.141593 ..., T wherein
机译:一种在着陆表面的预定区域着陆时的航天器运动控制方法,包括:在测量当前航天器值时,以迎角α对应于空气动力学K的最大值,将航天器输入到大气中的输入角为在时刻t处的运动坐标,其中i = 1,2,...,n,在大气中下降的过程中,即:V-航天器的飞行速度,航天器与θ的角速度矢量局部视界,航天器速度的投影矢量与局部局部视界平行之间的ε-角,行星中心与航天器质心之间的r-距离,φiλ-地心纬度和航天器次卫星的经度在确定η时分别指向航天器飞行高度的ρ-密度大气-航天器速度矢量的投影与大气中垂直局部水平平面输入设备之间的夹角ψ -航天器当前位置的亚卫星点与进入大气层的机器输入平面之间的角距离,根据以下关系确定航天器的γ侧倾角:gdeη-航天器速度矢量的投影到航天器之间的角度。局部地平线和垂直航天器进入飞机进入大气层; ψ-航天器次卫星点的当前位置与航天器进入大气层的入口平面之间的角距离; K.平衡空气动力学效率,由迎角α确定; = 3.141593 ...,T其中

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号