首页> 外国专利> MULTICHANNEL INSTRUMENT FOR MEASUREMENT AND ANALYSIS OF ROTOR VIBRATION PARAMETERS

MULTICHANNEL INSTRUMENT FOR MEASUREMENT AND ANALYSIS OF ROTOR VIBRATION PARAMETERS

机译:转子振动参数测量与分析的多通道仪器

摘要

FIELD: measurement.;SUBSTANCE: use for measurement and analysis of vibration parameters of rotors. Essence of invention consists in that multichannel device for measurement and analysis of vibration parameters of rotors, in which input connector 1 is connected to ADC 3, input connector 2 is connected to ADC 3, input connector 4 is connected to input of phase marking generating module 5, output of which is connected to ADC 3, input connector 6 is connected to input of axial shift module 7, which output is connected to ADC 3, input connector 8 is connected to one of inputs of signal normalization unit 9, output of which is connected to ADC 3, input connector 10 is connected to one of inputs of signal normalization module 11, output of which is connected to ADC 3, input connector 12 is connected to one of inputs of signal normalization module 13, output of which is connected to ADC 3, input connector 14 is connected to one of inputs of signal normalization module 15, output of which is connected to ADC 3, and output of ADC 3 is connected to input of personal computer 16, first control output of module 17 for generation of reference signals and control is connected to control input of axial shift module 7, second control output is connected to control input of signal normalization unit 9, third control output is connected to control input of signal normalization unit 11, fourth control output is connected to control input of signal normalization module 13, and fifth control output is connected to control input of signal normalization module 15, and, in addition, first output of module 17 for generation of reference signals and control is connected to one of inputs of signal normalization unit 9, second output is connected to one of inputs of signal normalization unit 11, third output is connected to one of inputs of signal normalization module 13, and fourth output is connected to one of inputs of signal normalization module 15, input connector 8 is connected to normally open contact of commutator 18 and one of capacitor plates 19 located in module 9 of signal normalization, and movable contact of switch 18 is connected to second coating of capacitor 19 and to input of cascade 20 of buffer interference suppression, output of which is connected to one of inputs of rectifier 21 of precision summing and with normally closed contact of switch 22, wherein the second input of rectifier 21 of precision adder is supplied with signal from first output of module 17 for generation of reference signals and control, output of rectifier 21 of precision adder is connected to normally open contact of switch 22, which movable contact is connected to input of inverter 23 and normally closed contact of commutator 24, normally open contact of which is connected to output of inverter 23, and movable contact is connected to input of filtration amplifier 25, output of filtration amplifier 25 is connected to one of ADC 3 inputs, wherein second control output of module 17 for generation of reference signals and control is connected to controlled contacts of switches 18, 22 and 24 in signal normalization unit 9, input connector 10 is connected to normally open contact of commutator 18 and one of capacitor plates 19 located in module 11 of normalizing signal, and movable contact of switch 18 is connected to second cover of capacitor 19 and to input of cascade 20 of buffer interference suppression, output of which is connected to one of inputs of rectifier 21 of precision summing and with normally closed contact of switch 22, at that, to the second input of the precision adder rectifier 21 a signal is supplied from the second output of module 17 for generation of reference signals and control, output of rectifier 21 of precision adder is connected to normally open contact of switch 22, which movable contact is connected to input of inverter 23 and normally closed contact of commutator 24, normally open contact of which is connected to output of inverter 23, and movable contact is connected to input of filtration amplifier 25, output of filtration amplifier 25 is connected to one of ADC 3 inputs, at that, third control output of module 17 for generation of reference signals and control is connected to controlled contacts of switches 18, 22 and 24 in signal normalization unit 11, input connector 12 is connected to normally open contact of commutator 18 and one of capacitor plates 19 located in module 13 of signal normalization, and movable contact of switch 18 is connected to second cover of capacitor 19 and to input of cascade 20 of buffer interference suppression, output of which is connected to one of inputs of rectifier 21 of precision summing and with normally closed contact of switch 22, wherein the second input of rectifier 21 of precision adder is supplied with signal from third output of module 17 for generation of reference signals and control, output of rectifier 21 of precision adder is connected to normally open contact of switch 22, which movable contact is connected to input of inverter 23 and normally closed contact of commutator 24, normally open contact of which is connected to output of inverter 23, and movable contact is connected to input of filtering amplifier 25, output of filtration amplifier 25 is connected to one of inputs of ADC 3, wherein fourth control output of module 17 for generation of reference signals and control is connected to controlled contacts of switches 18, 22 and 24 in signal normalization module 13, input connector 14 is connected to normally open contact of commutator 18 and one of capacitor plates 19 located in module 15 of signal normalization, and movable contact of switch 18 is connected to second cover of capacitor 19 and to input of cascade 20 of buffer interference suppression, output of which is connected to one of inputs of rectifier 21 of precision summing and with normally closed contact of switch 22, wherein the second input of rectifier 21 of precision adder is supplied with the fourth output of module 17 for generation of reference signals and control, output of rectifier 21 of precision adder is connected to normally open contact of switch 22, which movable contact is connected to input of inverter 23 and normally closed contact of commutator 24, normally open contact of which is connected to output of inverter 23, and movable contact is connected to input of filtration amplifier 25, output of filtration amplifier 25 is connected to one of ADC 3 inputs, wherein fifth control output of module 17 for generation of reference signals and control is connected to controlled contacts of switches 18, 22 and 24 in module 15 of signal normalization.;EFFECT: technical result, which can be achieved by means of the proposed invention, is reduced to increase in the rotor parameters measurement accuracy.;1 cl, 2 dwg
机译:领域:测量;实体:用于测量和分析转子的振动参数。本发明的实质在于,用于测量和分析转子的振动参数的多通道设备,其中输入连接器1连接到ADC 3,输入连接器2连接到ADC 3,输入连接器4连接到相位标记生成模块的输入在图5中,其输出连接到ADC 3,输入连接器6连接到轴向移位模块7的输入,该输出连接到ADC 3,输入连接器8连接到信号归一化单元9的输入之一。连接到ADC 3,输入连接器10连接到信号归一化模块11的输入之一,输出连接到ADC 3,输入连接器12连接到信号归一化模块13的输入之一。到ADC 3,输入连接器14连接到信号归一化模块15的输入之一,其输出连接到ADC 3,ADC 3的输出连接到个人计算机16的输入,首先控制用于生成参考信号的模块17的输出连接到轴向移位模块7的控制输入,第二个控制输出连接到信号归一化单元9的控制输入,第三个控制输出连接到信号归一化单元11的控制输入第四控制输出连接到信号归一化模块13的控制输入,第五控制输出连接到信号归一化模块15的控制输入,另外,模块17的用于生成参考信号和控制的第一输出连接到一个信号归一化单元9的输入中的第二输出连接到信号归一化单元11的输入之一,第三输出被连接到信号归一化模块13的输入之一,第四输出被连接到信号归一化模块15的输入之一。输入连接器8连接到换向器18的常开触点和位于信号法线模块9中的电容器板19之一然后,将开关18的可动触点连接到电容器19的第二涂层上,并连接到抑制缓冲器干扰的级联20的输入端,该级联20的输出端连接到精度求和的整流器21的输入之一,并且开关22的常闭触点其中,精密加法器的整流器21的第二输入端从模块17的第一输出端提供信号,以产生参考信号并进行控制,精密加法器的整流器21的输出端连接到开关22的常开触点,可动触点为连接到逆变器23的输入和换向器24的常闭触点,其常开触点连接到逆变器23的输出,可动触点连接到滤波放大器25的输入,滤波放大器25的输出连接到ADC之一3个输入,其中模块17的第二控制输出(用于生成参考信号和控制)连接到开关18、2的受控触点如图2和24所示,在信号归一化单元9中,输入连接器10连接到换向器18的常开触点和归一化信号模块11中的电容器板19之一,并且开关18的可动触点连接到电容器19的第二盖和到缓冲干扰抑制级联20的输入,其输出连接到精度求和的整流器21的输入之一,并具有开关22的常闭触点,在此,信号加到精度加法器整流器21的第二个输入。由模块17的第二输出提供的用于产生参考信号和控制,精密加法器的整流器21的输出连接到开关22的常开触点,该可动触点连接到逆变器23的输入和换向器24的常闭触点。 ,其常开触点连接到逆变器23的输出,而可动触点连接到滤波放大器25的输入,滤波放大器的输出r 25连接到ADC 3输入之一,这时,模块17的第三控制输出用于生成参考信号,并且控制连接到信号归一化单元11中的开关18、22和24的受控触点,输入连接器12被连接与换向器18和位于信号归一化模块13中的一块电容器板19的常开触点相连,并且开关18的可动触点与电容器19的第二个盖子相连,并与缓冲干扰抑制级联20的输入端相连,其输出为连接到精度求和的整流器21的输入之一并具有开关22的常闭触点,其中精度加法器的整流器21的第二输入被提供有来自模块17的第三输出的信号,用于生成参考信号和控制精密加法器的整流器21的输出连接到开关22的常开触点,该可动触点连接到逆变器23的输入和换向器24的常闭触点,其常开触点连接到逆变器23的输出,以及可移动触点连接到滤波放大器25的输入,滤波放大器25的输出连接到ADC 3的输入之一,其中模块17的第四控制输出用于生成参考信号,控制连接到开关18、22的受控触点信号归一化模块13中的“ 24”和“ 24”输入连接器14连接到换向器18的常开触点和位于信号归一化模块15中的电容器板19之一,开关18的可动触点连接到电容器19的第二盖并缓冲干扰抑制级联20的输入,其输出连接到精度求和且通常闭合的整流器21的输入之一d。开关22的触点,其中精密加法器的整流器21的第二输入端被提供有模块17的第四输出,用于产生参考信号和控制,精密加法器的整流器21的输出端连接到开关22的常开触点,可动触点连接到逆变器23的输入,而换向器24的常闭触点连接到逆变器23的输出,可动触点连接到滤波放大器25的输入,滤波放大器25的输出连接到ADC 3输入之一,其中用于生成参考信号和控制的模块17的第五个控制输出连接到信号归一化模块15中的开关18、22和24的受控触点;效果:技术成果,可以实现通过提出的发明,减少了转子参数的测量精度。1 cl,2 dwg

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号