首页> 中国专利> 机载系统PHM测试性建模与诊断策略优化方法和装置

机载系统PHM测试性建模与诊断策略优化方法和装置

摘要

本发明提供了机载系统PHM测试性建模与诊断策略优化方法和装置,所述方法包括:使用拉丁超立方抽样构建系统不同工作状态的仿真参数空间,通过数据挖掘提取数据特征值作为测试点,基于ROC曲线建立评价标准评估测试点对于不同故障的检测能力,构建带有不确定状态的4值相关性矩阵,然后计算带有惩罚项的启发式评估函数生成测试序列,优化诊断策略。本发明解决了复杂系统中不可靠测试导致的测试性设计困难的问题,为不确定性多值属性系统的诊断策略优化问题提出了解决方法,能够有效提高故障诊断的准确性和故障隔离的效率。

著录项

  • 公开/公告号CN114925536A

    专利类型发明专利

  • 公开/公告日2022-08-19

    原文格式PDF

  • 申请/专利权人 南京航空航天大学;

    申请/专利号CN202210610321.8

  • 申请日2022-05-31

  • 分类号G06F30/20(2020.01);G06F119/02(2020.01);

  • 代理机构江苏圣典律师事务所 32237;

  • 代理人于瀚文

  • 地址 210016 江苏省南京市秦淮区御道街29号

  • 入库时间 2023-06-19 16:26:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-06

    实质审查的生效 IPC(主分类):G06F30/20 专利申请号:2022106103218 申请日:20220531

    实质审查的生效

说明书

技术领域

本发明涉及机载系统PHM测试性建模与诊断策略优化方法和装置。

背景技术

通过对机载系统开展测试性建模、分析与评价工作,能够进一步明确装备故障预测与健康管理(Prognostic and Health Management,PHM)所需的最佳的传感器数量、最优的传感器布局、最合理的测试序列及最合适的监测方案等,对于开展飞机系统与装备状态监测、故障诊断、寿命预测及健康管理等工作是非常有益的。系统的测试性水平,也称为可检测性,反应设备能否及时、准确地检测其工作状态的能力。因此测试性设计(Design oftestability,DFT)在产品设计过程中至关重要,对降低设备后续维护成本、提高产品安全性有重要作用。通过优化测试性建模方法,能够更高效的进行测试性设计,提高产品故障检测能力及可靠性。

现有的测试性方法包括:多信号流图、信息流模型和混合诊断模型。上述方法可以表示故障-测试的相关性,系统中部件的工作性能和测试结果之间的关系由传统的相关性矩阵(D-matrix)中的故障和测试之间的布尔值来描述。如果一个测试能够检测到部件的故障,矩阵中的相应元素就是"1",如果不能,就是"0"。然而,对于通常由机械、电子和液压组成的复杂系统,由于系统中的各个模块和单元间相互耦合,导致故障间关系、故障与测试节点之间的关系复杂,使用0/1表示的二值测试矩阵往往不能准确描述故障间及故障与测试节点之间的关系,容易出现故障信息表述不充分或者故障模糊组的情况。所以为了准确描述故障于测试之间的关系以及关联程度,许多学者使用了多值属性系统(Multi-ValuedAttribute System,MVAS)用来描述具有复杂系统,并展开了相应的故障诊断策略的研究。如果一个系统中的测试结果超过两个,则该系统被定义为多值属性系统。

目前的测试性模型主要是基于确定性假设,即如果一个传感器与故障有关,当故障发生时,传感器将以100%的概率检测到该故障。然而复杂系统中存在着由于生产装配、使用磨损、工作环境等不确定因素所造成的干扰,故障检测概率与系统的不确定性密切相关,这意味着,测试可能有漏检和误报。然而,关于带不可靠测试的MVAS的测试序列生成的研究却很少

综上,现有的技术中缺少一种面向机载系统PHM的测试性建模与诊断策略优化方法,针对复杂系统实际运行过程中产生的不确定性因素所导致的测试结果不确定性,建立多值属性系统的测试性模型,生成测试序列并优化诊断策略。

发明内容

发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供机载系统PHM测试性建模与诊断策略优化方法,通过数据挖掘提取数据特征值作为测试点,基于ROC曲线定量评估测试点与故障之间的关系,构建包含不确定状态的相关性矩阵,并使用融合信息增益的启发式评估函数搜索测试点,生成测试序列,进行故障诊断策略优化。

本发明方法具体包括如下步骤:

步骤1、确定复杂系统的典型故障模式,主要分析故障发生率较高的故障类型。界定不确定性参数的概率分布,主要考虑对系统状态影响较大的参数,包括:环境参数,表征系统的工作环境;经验参数,通过工程实践总结得到的或者是规范标准推荐使用的;故障参数,引起系统故障的参数。其中经验参数和故障参数都属于结构参数,对于故障参数需额外设定故障阈值,当参数值达到故障阈值时系统发生相应模式的故障。步骤1主要依据专家经验以及以往的研究基础;

步骤2、通过拉丁超立方抽样分别构建健康状态和不同故障状态下的参数空间,进行试验设计(Design of Experiment,DOE),得到试验设计DOE矩阵,从试验设计DOE矩阵中,依次抽取一个实验样本进行仿真实验,分别获取系统对应状态下的测试数据;

步骤3、对步骤2得到的系统测试数据进行数据挖掘,提取有效特征值代替传统的简单测试值分析,以特征值为测试点监测系统状态。

步骤4、基于受试者工作特征曲线(Receiver Operating Characteristic Curve,ROC),评估每个测试点对于系统不同状态的检测能力,量化测试点对系统故障诊断的潜力,并构建不确定性4值相关性矩阵(D矩阵),矩阵中包含4种状态:1、-1、0、U,其中U称为不确定状态;

步骤5、判断不确定性4值D矩阵是否划分完全,如果划分完毕,该矩阵将不再进行划分,跳到步骤7;如果没有完成划分,执行步骤6。矩阵是否划分完成评判标准包括:矩阵仅剩一行,或者矩阵全部为无信息列。无信息列定义为:该列除了元素“U”以外,只有一种状态。

步骤6、遍历每一个测试点,基于信息增益构造带有惩罚项的启发式评估函数,选择评估函数值最大的作为最优诊断测试点,根据最优测试点将不确定性4值D矩阵划分为不同的子矩阵,对每一个子矩阵重复执行步骤5,直到不确定性4值D矩阵划分完毕;

步骤7、将所有最优诊断测试点组合得到测试序列,判断故障模糊组和已隔离故障。

进一步地,步骤2包括:p个不确定参数的所有可能取值构成一个p维向量,将p维向量的每个分量都根据累计概率等分成w份,w为所需采样点的数量;从每一维的w个小区间中随机抽样构成w×p的初始矩阵M:

其中,R

对初始矩阵M中每一列的元素进行随机排列,以模拟不确定参数的随机组合,如下所示:

其中元素

进一步的,步骤2中,进行试验设计时需要多次运行拉丁超立方抽样过程。在构建健康状态参数空间时,所有的不确定参数的分布都需抽样,但是构建故障状态的参数空间时,对应的故障参数调整为故障阈值,对其余的参数分布进行抽样。

步骤4包括:不确定性4值D矩阵D

不确定性4值D矩阵中一行表示系统的一种状态,每一列表示一个测试点,矩阵元素D(f

给定测试点t

如果

如果

如果

如果

标定点坐标为(0.05,0.9),表示使用单个测试点对故障的检测时,真阳率(TrueRositive Rate,TPR)需要大于0.9,假阳率(False Positive Rate,FPR)小于0.05才满足检测要求。标定点坐标可以控制故障诊断的准确率和虚警率,选择标定点坐标(0.05,0.9)可以在保证诊断准确率和虚警率满足要求的情况下,以尽量少的诊断步骤检测到所有故障。另外,通过曲线下面积AUC可以判断出测试值在健康状态下的分布

d

步骤6包括:

根据典型故障模式确定系统原始故障模糊集为S={f

其中

为使计算有意义,定义如果

不确定状态U会对诊断过程造成干扰,因此在选择测试点将会根据U的数量计算惩罚项,惩罚项

其中N

最终测试点t

最优测试点t

进一步的,步骤6还包括:根据最优测试点对不同故障的3种检测能力{-1,0,1}将D矩阵划分为3个子矩阵

步骤7包括:如果不确定性4值D矩阵超过一行,则将对应的故障判断为一个故障模糊组;如果不确定性4值D矩阵只有一行,且对应的故障没有出现在其它的故障模糊组中,则该故障模式判断为已隔离故障。

本发明还提供了机载系统PHM测试性建模与诊断策略优化,包括:

参数确定模块,用于,确定复杂系统的典型故障模式,界定不确定性参数的概率分布,确定参数,包括:环境参数、经验参数、故障参数,其中经验参数和故障参数都属于结构参数,设定故障参数的故障阈值,当故障参数值达到故障阈值时系统发生相应模式的故障;

试验设计模块,用于,通过拉丁超立方抽样分别构建健康状态和不同故障状态下的参数空间,进行试验设计,得到试验设计DOE矩阵,从试验设计DOE矩阵中,依次抽取一个实验样本进行仿真实验,分别获取系统对应状态下的测试数据;

数据挖掘模块,用于,对步骤2得到的测试数据进行数据挖掘,提取有效特征值代替测试值分析,以特征值为测试点监测系统状态;

故障诊断和优化模块,用于,基于受试者工作特征曲线,评估每个测试点对于系统不同状态的检测能力,量化测试点对系统故障诊断的潜力,并构建不确定性4值相关性矩阵(D矩阵),矩阵中包含4种状态:1、-1、0、U,其中U称为不确定状态;判断不确定性4值D矩阵是否划分完全,如果划分完毕,将所有最优诊断测试点组合得到测试序列,判断故障模糊组和已隔离故障;如果没有完成划分,遍历每一个测试点,基于信息增益构造带有惩罚项的启发式评估函数,选择评估函数值最大的作为最优诊断测试点,根据最优测试点将不确定性4值D矩阵划分为不同的子矩阵,对每一个子矩阵,判断不确定性4值D矩阵是否划分完全,直到不确定性4值D矩阵划分完毕;矩阵是否划分完成评判标准包括:矩阵仅剩一行,或者矩阵全部为无信息列。

本发明还提供了一种存储介质,存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现所述的机载系统PHM测试性建模与诊断策略优化方法。

本发明的有益效果是,开发了飞机机载系统与设备PHM的测试性建模与故障诊断策略优化方法。考虑到制造和运行中各种不确定性因素,通过拉丁超立方抽样构建系统不同运行状态下的仿真参数空间。提取有效特征值代替传统的简单测试值分析,以特征值为测试点监控系统状态,解决传感器数量限制导致的故障信息表述不充分问题。针对不确定性传播导致的测试值的随机性,构建了一种新的4值属性D矩阵描述测试点与故障之间的关系。引入了接收者工作特征(ROC)曲线来评估D矩阵的每个元素,根据标定点和曲线下面积AUC建立评价标准,这可以有效地评估测试点对于不同故障的诊断能力。为了优化具有不确定状态的多值属性系统(MVAS)的诊断策略,由于不确定状态给故障诊断过程造成的干扰,提出了基于信息增益的带有惩罚项的启发式评估函数来搜索最优测试点,并针对不确定状态提出了新的子矩阵划分方式,最终得到诊断效率最高的测试序列。

附图说明

下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。

图1为本发明的流程图。

图2本发明实施例中的系统特征值示意图。

图3本发明实施例中的第16个测试点的3类不同测试结果的ROC曲线示意图。

图4本发明实施例中的第16个测试点的3类不同测试值分布示意图。

图5本发明实施例中的故障诊断树示意图。

具体实施方式

本发明方法流程图如图1所示,包括:

S1、确定复杂系统的典型故障模式,主要分析故障发生率较高的故障类型,例如在燃油计量组件(FMU)中,有6种常见的故障模式,包括:伺服阀永磁体退磁、伺服阀反馈弹簧刚度退化、伺服阀滑阀内漏、计量活门内漏、伺服阀固定节流孔堵塞、伺服阀滑阀卡滞。考虑对系统状态影响较大的9个不确定参数,界定不确定性参数的概率分布,环境参数:油温、油压;经验参数:作动筒筒径、作动筒杆径;故障参数:剩余磁通、反馈弹簧刚度、滑阀内漏直径、计量活门内漏直径、固定节流孔直径、滑阀静摩擦。根据专家经验及以往研究,给定不确定参数的分布和故障参数故障阈值,FMU系统的不确定参数及对应取值如表1所示。

表1

S2、通过拉丁超立方抽样准确构建参数空间,进行试验设计(Design ofExperiment,DOE)。进行实验设计时需要多次运行拉丁超立方抽样过程。在构建健康状态参数空间时,所有的不确定参数的分布都需抽样,但是构建故障状态的参数空间时,对应的故障参数调整为故障阈值,对其余的参数分布进行抽样。因此,实例中共进行了7次抽样,分别获得了系统7种状态下的DOE矩阵。拉丁超立方抽样包括如下步骤:

p个不确定参数的所有可能取值构成一个p维向量,将p维向量的每个分量都根据累计概率等分成w份,w为所需采样点的数量,p为不确定参数的个数。从每一维的w个小区间中随机抽样构成w×p的初始矩阵M:

对初始矩阵中每一列的元素进行随机排列,以模拟不确定参数的随机组合,如下所示:

其中元素R的下标X

S3、为了解决传感器数量限制导致的故障信息不充分的问题,受伺服阀流量增益曲线的启发,本实施例将线性可变差动变压器(Linear Variable DifferentialTransformer,LVDT)的位移信号与伺服阀控制电流相结合,得到速度增益曲线用于反映FMU系统整体性能。该曲线只需同时测量控制电流I

S4、在大量仿真数据的基础上构建4值D矩阵。矩阵中的元素表示对应测试点对故障的检测能力。以测试点t

构建测试点对故障模糊集的相关性矩阵,完整的FMU的相关性矩阵如表2所示,p(f

表2

S5、判断D矩阵是否划分完全,判断矩阵是否划分完毕,如果划分完毕,该矩阵将不再进行划分跳到S6;如果没有完成划分,执行S5。矩阵是否划分完成评判标准包括:矩阵仅剩一行,或者矩阵全部为无信息列。

S6、寻找最优测试点。通过计算矩阵中每个测试点的评估函数值发现,t

表3

S7、最终得到的测试序列是{t

本实施例还提供了机载系统PHM测试性建模与诊断策略优化,包括:

参数确定模块,用于,确定复杂系统的典型故障模式,界定不确定性参数的概率分布,确定参数,包括:环境参数、经验参数、故障参数,其中经验参数和故障参数都属于结构参数,设定故障参数的故障阈值,当故障参数值达到故障阈值时系统发生相应模式的故障;

试验设计模块,用于,通过拉丁超立方抽样分别构建健康状态和不同故障状态下的参数空间,进行试验设计,得到试验设计DOE矩阵,从试验设计DOE矩阵中,依次抽取一个实验样本进行仿真实验,分别获取系统对应状态下的测试数据;

数据挖掘模块,用于,对步骤2得到的测试数据进行数据挖掘,提取有效特征值代替测试值分析,以特征值为测试点监测系统状态;

故障诊断和优化模块,用于,基于受试者工作特征曲线,评估每个测试点对于系统不同状态的检测能力,量化测试点对系统故障诊断的潜力,并构建不确定性4值相关性矩阵(D矩阵),矩阵中包含4种状态:1、-1、0、U,其中U称为不确定状态;判断不确定性4值D矩阵是否划分完全,如果划分完毕,将所有最优诊断测试点组合得到测试序列,判断故障模糊组和已隔离故障;如果没有完成划分,遍历每一个测试点,基于信息增益构造带有惩罚项的启发式评估函数,选择评估函数值最大的作为最优诊断测试点,根据最优测试点将不确定性4值D矩阵划分为不同的子矩阵,对每一个子矩阵,判断不确定性4值D矩阵是否划分完全,直到不确定性4值D矩阵划分完毕;矩阵是否划分完成评判标准包括:矩阵仅剩一行,或者矩阵全部为无信息列。

本实施例还提供了一种存储介质,存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现所述的机载系统PHM测试性建模与诊断策略优化方法。

如上所述,根据本申请实施例的装置,可以实现在各种终端设备中,例如分布式计算系统的服务器。在一个示例中,根据本申请实施例的装置可以作为一个软件模块和/或硬件模块而集成到所述终端设备中。例如,该装置可以是该终端设备的操作系统中的一个软件模块,或者可以是针对于该终端设备所开发的一个应用程序;当然,该装置同样可以是该终端设备的众多硬件模块之一。

替换地,在另一示例中,该装置与终端设备也可以是分立的终端设备,并且该装置可以通过有线和/或无线网络连接到该终端设备,并且按照约定的数据格式来传输交互信息。

本发明提供了机载系统PHM测试性建模与诊断策略优化方法和装置,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号