首页> 中国专利> 一种基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法

一种基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法

摘要

基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法,它涉及一种气体传感器漂移补偿方法。本发明为了解决大多数基于子空间学习的漂移补偿方法只通过对齐源域和目标域之间的边缘分布来降低分布差异,而没有对两个域之间的条件分布进行评估,降低了漂移补偿方法分类性能同时增加了标签成本的问题。本发明的具体步骤为:步骤一、采集源域和目标域数据集;步骤二、建立特征集;步骤三、子空间学习;步骤四、构件气体分类模型并训练;步骤五、对目标域数据的标签进行预测。本发明属于模式识别领域。

著录项

  • 公开/公告号CN114925762A

    专利类型发明专利

  • 公开/公告日2022-08-19

    原文格式PDF

  • 申请/专利权人 哈尔滨工业大学;

    申请/专利号CN202210522582.4

  • 发明设计人 宋凯;色海锋;周天;王祁;

    申请日2022-05-13

  • 分类号G06K9/62(2022.01);

  • 代理机构哈尔滨奥博专利代理事务所(普通合伙) 23220;

  • 代理人叶以方

  • 地址 150000 黑龙江省哈尔滨市南岗区西大直街92号

  • 入库时间 2023-06-19 16:25:24

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-06

    实质审查的生效 IPC(主分类):G06K 9/62 专利申请号:2022105225824 申请日:20220513

    实质审查的生效

说明书

技术领域

本发明涉及一种气体传感器漂移补偿方法,属于模式识别领域。

背景技术

气体传感器是一种将某种气体体积分数转化成对应电信号的气体分析系统。由于其检测成本低、操作简单、体积小等优点,气体传感器已被应用于许多工业领域,包括食品分析、环境监测、医学诊断和爆炸物检测等。然而,在漂移的作用下,气体传感器所采集数据的特征分布会随着时间的推移而变化。在这种情况下,传统的机器学习方法无法胜任带有漂移影响的分类任务。

目前,现有的漂移补偿技术通常利用数据处理、子空间学习或者学习一个鲁棒分类器来抑制传感器漂移,但是大多数方法的分类准确率并不理想(准确率小于90%)。另一方面,基于迁移样本的漂移补偿方法需要在模型的训练阶段使用带有标签的目标域样本。事实上,目标域中的样本会随着时间的推移而不断增加。为了适应气体传感器漂移的变化,基于迁移样本的漂移补偿方法必须收集更多带有标签的样本。然而,在现实世界中,收集足够多带有标签的样本是昂贵和费时的。此外,大多数基于子空间学习的漂移补偿方法只通过对齐源域和目标域之间的边缘分布来降低分布差异,而没有对两个域之间的条件分布进行评估,这将降低漂移补偿方法的分类性能。

发明内容

本发明为解决大多数基于子空间学习的漂移补偿方法只通过对齐源域和目标域之间的边缘分布来降低分布差异,而没有对两个域之间的条件分布进行评估,降低了漂移补偿方法分类性能同时增加了标签成本的问题,进而提出基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法。

本发明为解决上述问题采取的技术方案是:本发明所述方法的具体步骤如下:

步骤一、采集源域和目标域数据集;

步骤二、建立特征集;

步骤三、子空间学习;

步骤四、构件气体分类模型并训练;

步骤五、对目标域数据的标签进行预测。

进一步的,步骤一中利用同一气体传感器采集不同时间段的气体的原始数据或利用同种配置的不同气体传感器在同一时间采集气体的原始数据,建立源域数据集S和目标域数据集T。

进一步的,步骤二中根据采集的原始数据提取多种特征,并建立特征集,即:

公式(1)和公式(2)中,X

进一步的,步骤三中计算投影矩阵P

进一步的,投影矩阵P

P

公式(3)中P表示第d个最小特征值对应的特征向量,d=1,2,3......。

进一步的,步骤四中在子空间中,根据建立指导样本集,并将指导样本集和源域数据输入至CAELM中进行训练;

在第一次迭代过程中,CAELM选择ELM作为分类器,只有源域样本参与分类器的训练,并且分类器对目标域的分类结果作为软标签;这些软标签用于下次迭代过程中的子空间学习和气体分类模型的训练;

在随后的迭代过程中,利用上次迭代所得到的软标签,CAELM选择DAELM作为分类器。

进一步的,步骤五中当子空间和气体分类模型经过多次迭代训练并满足要求后,利用训练完成的模型对目标域样本进行分类,从而得出最终的分类结果。

本发明的有益效果是:本发明所述方法在特征级和决策级均设计漂移补偿策略,从而以最小的标签成本实现双重抑制传感器漂移的效果,提高分类准确率;本发明提出了一种子空间学习方法,能在子空间中最小化源域和目标域的特征分布差异,同时保留原始数据的有用信息;本发明解决了大多数基于子空间学习的漂移补偿方法只通过对齐源域和目标域之间的边缘分布来降低分布差异,而没有对两个域之间的条件分布进行评估,降低了漂移补偿方法分类性能的问题;针对不断进化的漂移(特征分布不断改变),提出的子空间学习方法可以自适应地平衡边缘分布和条件分布的重要性,同时可以自适应地平衡子空间中源域和目标域的能量,这使得本发明能够同时解决长期漂移场景和短期漂移场景下的气体分类任务;提出的子空间学习方法通过特征值分解求解,计算简单,易于实现;本发明使用目标域的软标签计算源域和目标域之间的条件分布,同时在决策级利用目标域的软标签提高模型的跨域迁移能力。所以,在模型训练阶段,本发明无需使用目标域样本的真实标签,从而降低了标签成本;子空间和分类器通过迭代精炼软标签实现不断优化,提高了分类准确率,因此,本发明取得在特征级和决策级的双重漂移补偿效果。

附图说明

图1是本发明的流程示意图;

图2是本发明的示意图。

具体实施方式

具体实施方式一:结合图1和图2说明本实施方式,本实施方式所述基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法是通过如下步骤实现的:

步骤一、采集源域和目标域数据集;

步骤二、建立特征集;

步骤三、子空间学习;

步骤四、构件气体分类模型并训练;

步骤五、对目标域数据的标签进行预测。

具体实施方式二:结合图1和图2说明本实施方式,本实施方式所述基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法的步骤一中利用同一气体传感器采集不同时间段的气体的原始数据或利用同种配置的不同气体传感器在同一时间采集气体的原始数据,建立源域数据集S和目标域数据集T。

具体实施方式三:结合图1和图2说明本实施方式,本实施方式所述基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法的步骤二中根据采集的原始数据提取多种特征,并建立特征集,即:

公式(1)和公式(2)中,X

具体实施方式四:结合图1和图2说明本实施方式,本实施方式所述基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法的步骤三中计算投影矩阵P

本实施方式中在第一次迭代过程中,由于无法获得目标域样本的软标签,所以α

具体实施方式五:结合图1和图2说明本实施方式,本实施方式所述基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法的投影矩阵P

P

公式(3)中P表示第d个最小特征值对应的特征向量,d=1,2,3......。

具体实施方式六:结合图1和图2说明本实施方式,本实施方式所述基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法的步骤四中在子空间中,根据建立指导样本集,并将指导样本集和源域数据输入至CAELM中进行训练;

在第一次迭代过程中,CAELM选择ELM作为分类器,只有源域样本参与分类器的训练,并且分类器对目标域的分类结果作为软标签;这些软标签用于下次迭代过程中的子空间学习和气体分类模型的训练;

在随后的迭代过程中,利用上次迭代所得到的软标签,CAELM选择DAELM作为分类器。

具体实施方式七:结合图1和图2说明本实施方式,本实施方式所述基于子空间学习和跨域自适应极限学习机的气体传感器漂移补偿方法的步骤五中当子空间和气体分类模型经过多次迭代训练并满足要求后,利用训练完成的模型对目标域样本进行分类,从而得出最终的分类结果。

工作原理

本发明提出了一种子空间学习方法,旨在子空间中最小化源域和目标域的特征分布差异,同时保留原始数据的有用信息,即在特征级实现气体传感器漂移补偿;

假设

在基于P的公共子空间中,最小化边际分布的距离可以降低源域和目标域的数据分布差异,计算公式如下:

公式(4)中μ

公式(5)中u

类似地,最小化条件分布的距离可以也降低源域和目标域的分布差异,计算公式如下:

公式(6)中c∈{1,2,…,C}表示源域和目标域的类标签,

然而,在现实世界中,很难收集到足够的带有标签的目标域样本,无法精确地计算条件分布距离;为了估计条件分布距离,本发明利用一个分类器去预测目标域样本的标签,预测的标签被称为目标域样本的软标签;最后,利用带有软标签的目标域来估计条件分布距离;所以式(6)可重写为:

公式(7)中(^)表示分类器的分类结果,

为了自适应地平衡边际分布和条件分布的重要性,本发明利用平衡因子α

此外,在子空间中最大化源域和目标域的能量可以防止投影后的数据失真,从而保留更多的可用信息;计算公式如下:

事实上,源域和目标域中的样本数量通常是不平衡的;因此,本发明利用平衡因子α

子空间学习旨在同时优化(8)和(11),即本发明寻求最小化源域和目标域之间的分布差异(边际分布和条件分布),同时保持尽可能多的判别信息;因此,可以表述为:

显然,公式(19)中的最小化问题非唯一解;因此,施加一个等式约束,将(12)转换为:

公式(13)中

为了解决(13)中具有等式约束的最小化问题,引入了拉格朗日函数:

公式(14)中

将L对P的偏导数设为0,即

因此,投影矩阵P可以通过特征值分解来求解;为了便于观察,将(15)改写为:

AP=PΦ (16)

公式(16)中

从式(16)中可以看出,P是由A的特征向量组成的矩阵;进一步地,由于式(12) 是一个最小化问题,所以最优投影矩阵P

P

2、传统的极限学习机(ELM)

在多分类任务中,假设[x

ELM的训练过程包括两步:

第一步,ELM从输入层到隐藏层构建特征映射,在隐藏层中随机生成参数;

第二步,计算输出权重β,计算公式如下:

公式(18)中

通过将式(18)中的约束项代入目标函数,然后(18)可以重写为:

公式(19)中

公式(19)中的正则化最小二乘问题可以通过将L

公式(20)中

3、域自适应极限学习机(DAELM)

DAELM是一种基于传统ELM的域自适应算法,在不损失计算效率的情况下,提高了模型的跨域迁移能力;DAELM的核心是为目标域中的一些样本贴上标签并作为算法的正则化项,DAELM的表述为:

公式(21)中S表示源域T表示目标域,

公式(22)中,

4、基于指导样本的跨域自适应极限学习机(CAELM)

进一步观察公式(20)和公式(22),当迁移样本集为空时,DAELM简化为传统的ELM,即公式(22)简化为公式(20)的解,为了在更低的标签成本下提高跨域转移能力,本发明提出了一种结合传统ELM和DAELM的方法,即基于指导样本的域自适应极限学习机(CAELM);如果指导样本集为空,则所提出的CAELM使用传统的ELM作为分类器;即利用源域样本训练ELM,然后预测目标域样本的标签;如果指导样本集是非空的,则所提出的CAELM使用DAELM作为分类器;即利用源域样本和指导样本训练 CAELM,然后预测目标域样本的标签;因此,在CAELM中表示为:

本质上,CAELM使用指导样本来替代迁移样本,这不仅在决策水平上实现了漂移补偿,而且降低了标签成本,建立指导样本集的方法如下:

步骤一:计算子空间中源域属于c类样本的中心,计算公式如下

公式(24)中μ表示子空间中源域属于c类样本的中心,S表示源域,

步骤二:利用CAELM去预测目标域中样本的标签,预测的标签被称为目标域样本的软标签,如果

步骤三:计算

如果属于c类的样本数量少,则无法保证这些软标签与真实结果一致;因此,步骤二使用th

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号