首页> 中国专利> 利用超快激光供血管腔内治疗的装置

利用超快激光供血管腔内治疗的装置

摘要

本发明公开了一种利用超快激光供血管腔内治疗的装置,包括超快激光器、光纤导管、光纤耦合模块和手术辅助结构。超快激光器用于产生并输出超快激光脉冲;光纤耦合模块设置在光纤导管的输入端处,用于耦合超快激光器输出的超快激光脉冲并将超快激光脉冲传输给光纤导管的传导光纤束,传导光纤束用于接收光纤耦合模块输给的超快激光脉冲并传输至光纤导管的输出端,由光纤导管的输出端向前输出超快激光脉冲以对血管腔内病变进行辐射消蚀;手术辅助结构用于设置在光纤导管的空腔结构中,将光纤导管引导至血管腔内病变处,以及用于向血管腔内病变处输送冷却液体、造影剂或/和药物。本发明可以安全高效地实现血管腔内消蚀减容效果。

著录项

  • 公开/公告号CN114886556A

    专利类型发明专利

  • 公开/公告日2022-08-12

    原文格式PDF

  • 申请/专利权人 北京清华长庚医院;清华大学;

    申请/专利号CN202210334439.2

  • 发明设计人 吴巍巍;张海涛;

    申请日2022-03-30

  • 分类号A61B18/24(2006.01);

  • 代理机构北京清亦华知识产权代理事务所(普通合伙) 11201;

  • 代理人徐章伟

  • 地址 102218 北京市昌平区立汤路168号

  • 入库时间 2023-06-19 16:20:42

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-10-04

    实质审查的生效 IPC(主分类):A61B18/24 专利申请号:2022103344392 申请日:20220330

    实质审查的生效

说明书

技术领域

本发明涉及医疗器械技术领域,尤其是涉及一种利用超快激光供血管腔内治疗的装置。

背景技术

血栓和动脉粥样硬化斑块是人类心血管疾病的首要病因。血栓主要由人体内纤维蛋白、血小板、白细胞和红细胞等部分组成,可累及冠状动脉与外周动静脉,由血栓引发的脏器组织急性缺血致死率极高。动脉粥样硬化斑块是沿中等动脉和大动脉的壁上形成含有胆固醇、脂肪酸、细胞废物和钙化沉积的硬化斑块,可导致中等动脉和大动脉等血管管腔变窄,是冠心病、中风及外周动脉硬化性疾病的主导原因。因此,防治血栓和动脉粥样硬化斑块是降低人群死亡率、改善生命质量和缓解社会医疗负担的重要问题。

目前,清除血管腔内血栓和斑块的手段主要包括药物治疗和手术治疗两大类,除少数急性期病症可采取药物治疗外,大部分血栓和斑块仍需借助手术清除,以快速减少血管腔内负荷,改善器官功能。现代微创手术利用微创导管经药物或器械清除血栓和斑块,手术创伤较小,但仍存在一定局限,如药物溶栓导管需长时留置、溶栓药物存在出血风险、机械清除导管对亚急性血栓相对低效或血管壁损伤破裂风险高等,限制了当前微创血栓清除手术的广泛开展。

发明内容

本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种利用超快激光供血管腔内治疗的装置,可以安全高效清除血栓和斑块以实现良好的血管腔内消蚀减容效果。

根据本发明实施例的利用超快激光供血管腔内治疗的装置,包括超快激光器、光纤导管、光纤耦合模块和手术辅助结构;其中,所述超快激光器用于产生并输出超快激光脉冲;所述光纤耦合模块设置在所述光纤导管的输入端处,用于耦合所述超快激光器输出的超快激光脉冲并将超快激光脉冲传输给所述光纤导管的传导光纤束,所述传导光纤束用于接收所述光纤耦合模块输给的超快激光脉冲并传输至所述光纤导管的输出端,由所述光纤导管的所述输出端向前输出超快激光脉冲以对血管腔内病变进行辐射消蚀;所述手术辅助结构用于设置在所述光纤导管的空腔结构中,将所述光纤导管引导至血管腔内病变处,以及用于向血管腔内病变处输送冷却液体、造影剂或/和药物。

根据本发明实施例的利用超快激光供血管腔内治疗的装置,具有如下优点,第一、通过光纤导管将超快激光脉冲输送至血管腔内病变处(例如血栓和斑块)进行辐射消蚀,相比于传统药物和手术治疗方法,具备高度的精准性且对辐照周围组织基本无热损伤,可实现安全高效的血管腔内消蚀减容效果;第二、采用的超快激光器便于集成和开发,几乎无需维护,使用成本低,光束能量稳定;第三、使用光纤耦合模块对超快激光脉冲进行激光能量的耦合传输,使得超快激光脉冲能够适配地进入传导光纤束中,减少超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率;第四、手术辅助结构的设置可显著降低操作者的操作难度,便于操作者的实际消蚀操作和控制,具备较强的普适性。

根据本发明的一些实施例,所述超快激光器为固体超快激光器或光纤超快激光器。

根据本发明的一些实施例,所述光纤耦合模块采用自由空间耦合模块或光纤模式耦合模块。

根据本发明的一些实施例,当所述光纤耦合模块采用所述自由空间耦合模块时,所述利用超快激光供血管腔内治疗的装置还包括准直扩束光路,所述准直扩束光路设置在所述超快激光器与所述自由空间耦合模块之间,用于对所述超快激光器输出的超快激光脉冲进行处理,使得处理后的超快激光脉冲与所述自由空间耦合模块适配耦合。

根据本发明的一些实施例,所述准直扩束光路包括第一光隔离器,所述第一光隔离器用于防止后向散射光返回进入所述超快激光器。

根据本发明的一些实施例,所述自由空间耦合模块为平面聚焦阵列的光学元件。

根据本发明的一些实施例,所述自由空间耦合模块为微透镜阵列或微纳光学器件。

根据本发明的一些实施例,当所述光纤耦合模块采用所述光纤模式耦合模块时,所述光纤模式耦合模块包括与所述超快激光器相连的激光尾纤输出端、第二光纤隔离器,所述激光尾纤输出端、所述第二光纤隔离器和所述传导光纤束的输入端按顺序匹配焊接,所述第二光纤隔离器用于防止后向散射光返回进入所述超快激光器。

根据本发明的一些实施例,所述传导光纤束为低损耗光纤束。

根据本发明的一些实施例,所述低损耗光纤束采用普通阶跃折射率光纤、光子晶体光纤、微结构光纤、空心光纤中的一种或多种构成。

根据本发明的一些实施例,所述传导光纤束中的光纤在所述输入端处呈矩形排列形式或圆形排列形式并采用第一边框固定,所述传导光纤束中的光纤在所述输出端处呈环形排列形式或偏心排列形式并采用内边框和外边框进行固定以及采用保护窗口进行保护。

根据本发明的一些实施例,所述利用超快激光供血管腔内治疗的装置还包括激光检测模块和控制模块;所述激光检测模块用于从所述超快激光器输出的超快激光脉冲中分出小部分光束进行激光参数检测并将检测的数据反馈回所述控制模块;所述控制模块用于控制所述利用超快激光供血管腔内治疗的装置的开关运行和模式切换,并根据所述激光检测模块反馈的数据设定自动或手动方式修正激光参数。

根据本发明的一些实施例,当所述光纤耦合模块采用自由空间耦合模块时,所述激光检测模块包括分束器和第一探测器;所述分束器用于从所述超快激光器输出的超快激光脉冲中分出小部分光束;所述第一探测器用于对所述分束器分出的小部分光束进行激光参数检测并反馈回所述控制模块;当所述光纤耦合模块采用权利要求8中的所述光纤模式耦合模块时,所述激光检测模块包括检测光纤和第二探测器,所述检测光纤的一端和所述传导光纤束的输入端一起与所述激光尾纤输出端匹配焊接,所述检测光纤的另一端连接至所述第二探测器,所述第二探测器根据所述检测光纤中的光纤个数占所述检测光纤中的光纤个数和所述传导光纤束中的光纤个数之和的比例计算光路中的实际激光参数并反馈回所述控制模块。

根据本发明的一些实施例,所述控制模块包括显示界面和按键界面;所述显示界面用于显示参数;所述按键界面用于设定参数、“工作/修正”模式切换以及“修正”模式下“自动/手动”模式切换,以控制所述超快激光器输出超快激光脉冲以及根据所述激光检测模块反馈的数据进行自动或手动方式的参数修正。

根据本发明的一些实施例,所述“自动”模式为有内部电路和程序对所述激光检测模块反馈的数据进行处理,自动修正错误的激光参数;所述“手动”模式为根据所述显示界面显示的所述激光检测模块反馈的数据,通过使用所述按键界面手动修正错误的激光参数。

根据本发明的一些实施例,所述光纤导管上在靠近所述输出端的部位上设有合并接口,所述合并接口与所述空腔结构连通;所述手术辅助结构包括导丝和输液管,所述导丝和所述输液管用于从所述合并接口进入所述空腔结构中,所述导丝用于将所述光纤导管引导至血管腔内病变处,所述输液管用于向血管腔内病变处输送冷却液体、造影剂或/和药物。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1为本发明一个实施例的利用超快激光供血管腔内治疗的装置的结构示意图。

图2为本发明另一个实施例的利用超快激光供血管腔内治疗的装置的结构示意图。

图3为本发明实施例的位于传导光纤束的输入端处的光纤排列结构示意图。

图4为本发明实施例的位于传导光纤束的输出端处的一种光纤排列结构示意图。

图5为本发明实施例的位于传导光纤束的输出端处的另一种光纤排列结构示意图。

图6为本发明实施例的位于空腔结构中的手术辅助结构的横截面图。

图7为本发明实施例的位于空腔结构中的手术辅助结构的纵剖视图。

图8为本发明实施例的控制模块的操作界面示意图。

图9为本发明实施例的控制模块的控制流程框图。

附图标记:

利用超快激光供血管腔内治疗的装置1000

超快激光器1

光纤导管2

传导光纤束201 输入端2011 输出端2013 第一边框2014

内边框2015 外边框2016 空腔结构202 合并接口203 保护窗口204

光纤耦合模块3

自由空间耦合模块301 准直扩束光路302 光纤模式耦合模块303

激光尾纤输出端3031 第二光纤隔离器3032

手术辅助结构4

导丝401 输液管402

激光检测模块5

分束器501 第一探测器502 检测光纤503 第二探测器504

控制模块6

显示界面601 按键界面602

血管腔A 病变B

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。

下面结合图1至图9来描述本发明实施例的利用超快激光供血管腔内治疗的装置1000。

如图1至图7所示,根据本发明实施例的利用超快激光供血管腔内治疗的装置1000,包括超快激光器1、光纤导管2、光纤耦合模块3和手术辅助结构4;其中,超快激光器1用于产生并输出超快激光脉冲(如图1中实线箭头所示);光纤耦合模块3设置在光纤导管2的输入端2011处,用于耦合超快激光器1输出的超快激光脉冲并将超快激光脉冲传输给光纤导管2的传导光纤束201(如图4和图5所示),传导光纤束201用于接收光纤耦合模块3输给的超快激光脉冲并传输至光纤导管2的输出端2013,由光纤导管2的输出端2013向前输出超快激光脉冲以对血管腔A内病变B(如血栓或斑块)进行辐射消蚀(如图1和图2所示);手术辅助结构4用于设置在光纤导管2的空腔结构202中,将光纤导管2引导至血管腔A内病变B处,以及用于向血管腔A内病变B处输送冷却液体、造影剂或/和药物(如图1和图2所示)。

具体地,超快激光器1作为高能光源,可以产生并输出超快激光脉冲。超快激光器1输出的超快激光脉冲具备皮秒、飞秒量级的脉冲宽度和极高的瞬时峰值功率,可以与生物组织作用产生等离子体效应进而对生物组织进行高效汽化消蚀,从而很好地满足血管腔A内减容的医疗需求。例如当超快激光脉冲的波长为中波红外、近红外及其二倍频和三倍频等多种波段,作用于生物组织时可以产生等离子体等多种效应,进而对生物组织进行高效汽化消蚀。

光纤耦合模块3设置在光纤导管2的输入端2011处,用于耦合超快激光器1输出的超快激光脉冲并将超快激光脉冲传输给光纤导管2的传导光纤束201,也就是说,通过设置光纤耦合模块3,可以使得超快激光器1输出的超快激光脉冲能够适配地进入传导光纤束201中,减少超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率。

传导光纤束201用于接收光纤耦合模块3输给的超快激光脉冲并传输至光纤导管2的输出端2013,由光纤导管2的输出端2013向前输出超快激光脉冲以对血管腔A内病变B进行辐射消蚀。具体的,传导光纤束201的作用主要是传导超快激光脉冲,使得超快激光脉冲能够近距离直接照射在血管腔A内病变B上,因此,光纤导管2在使用时会被插入血管腔A内,光纤导管2的输出端2013会与病变B直接接触,然后利用光纤导管2的输出端2013输出的超快脉冲激光直接照射病变B,对血管腔A内病变B进行辐射消蚀,消蚀效率高,且对周围组织几乎无损伤;通过光纤导管2将超快激光脉冲输送至对血管腔A内病变B处对病变B进行辐射消蚀,相比于传统药物和手术治疗方法,具备高度的精准性且对辐照周围组织基本无热损伤,可实现安全高效的血管腔A内消蚀减容效果。

手术辅助结构4用于设置在光纤导管2的空腔结构202中,将光纤导管2引导至血管腔A内病变B处。在使用时,手术辅助结构4的前端会伸入到血管腔A内病变B处,然后光纤导管2沿着手术辅助结构4伸入到血管腔A内,直到输出端2013触碰到血管腔A内病变B处,然后利用超快激光脉冲对病变B进行消蚀,不会损伤血管腔A内其他组织;也就是说,手术辅助结构4可以引导光纤导管2快速准确方便地到达病变B处,显著了降低操作者的操作难度,便于操作者的实际消蚀操作和控制,具备较强的普适性。

手术辅助结构4还可用于向血管腔A内病变B处输送冷却液体、造影剂或/和药物。利用手术辅助结构4向血管腔A内病变B处输送冷却液体(例如生理盐水)用于消除消蚀过程可能产生的热效应;利用手术辅助结构4向血管腔A内病变B处输送造影剂以对血管进行造影,从而方便对血管腔A内的病变B情况或消蚀情况进行观察;利用手术辅助结构4向血管腔A内病变B处输送药物,例如促进血管壁修复等功效的药物,以获得更好的手术治疗效果。

根据本发明实施例的利用超快激光供血管腔内治疗的装置1000,具有如下优点,第一、通过光纤导管2将超快激光脉冲输送至血管腔A内病变B处(例如血栓和斑块)进行辐射消蚀,相比于传统药物和手术治疗方法,具备高度的精准性且对辐照周围组织基本无热损伤,可实现安全高效的血管腔A内消蚀减容效果;第二、采用的超快激光器1便于集成和开发,几乎无需维护,使用成本低,光束能量稳定;第三、使用光纤耦合模块3对超快激光脉冲进行激光能量的耦合传输,使得超快激光脉冲能够适配地进入传导光纤束201中,减少超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率;第四、手术辅助结构4的设置可显著降低操作者的操作难度,便于操作者的实际消蚀操作和控制,具备较强的普适性。

根据本发明的一些实施例,超快激光器1为固体超快激光器或光纤超快激光器,固体超快激光器和光纤超快激光器均能产生超快激光脉冲,该超快激光脉冲具备皮秒、飞秒量级的脉冲宽度和极高的瞬时峰值功率,可以与生物组织作用产生等离子体效应进而对生物组织进行高效汽化消蚀,从而很好地满足血管腔A内减容的医疗需求。固体超快激光器或光纤超快激光器便于集成和开发,寿命长,几乎无需维护,使用成本低,光束能量稳定,临床应用效果更为可靠。优选的,光纤超快激光器1为光纤飞秒脉冲激光器,波长为1030-1035nm,输出激光光束能量稳定,且设备紧凑,寿命长,几乎无需维护。

根据本发明的一些实施例,光纤耦合模块3采用自由空间耦合模块301或光纤模式耦合模块303。也就是说,采用自由空间耦合模块301或光纤模式耦合模块303均可以使得超快激光器1输出的超快激光脉冲能够适配地进入传导光纤束201中,减少了超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率。同时,自由空间耦合模块301可以降低操作者的操作难度低,便于操作者的实际消蚀操作和控制,具备较强的普适性。当光纤耦合模块3为光纤模式耦合模块303时,光纤模式耦合模块303采用光纤模式耦合器的耦合方式进行能量传输,实现了本发明实施例的利用超快激光供血管腔内治疗的装置1000整体的全光纤化,装置结构紧凑,便于集成,制作难度较低。

根据本发明的一些实施例,如图1所示,当光纤耦合模块3采用自由空间耦合模块301时,利用超快激光供血管腔内治疗的装置1000还包括准直扩束光路302,准直扩束光路302设置在超快激光器1与自由空间耦合模块301之间,用于对超快激光器1输出的超快激光脉冲进行处理,使得处理后的超快激光脉冲与自由空间耦合模块301适配耦合。需要说明的是,准直扩束光路302用于使从超快激光器1输出超快激光脉冲光束,准直且具有较好的平行性,照射到自由空间耦合模块301上的光场均匀,这样,从准直扩束光路302输出的超快激光脉冲经过自由空间耦合模块301的耦合后,超快激光脉冲的聚焦光斑会位于自由空间耦合模块301的焦平面上,避免了聚焦光斑的位置发生变化。当将传导光纤束201的输入端2011设置在自由空间耦合模块301的焦平面上,且传导光纤束201中的光纤端面与聚焦光斑一一对应时,就实现了对超快激光脉冲的高效匹配耦合传输;设置准直扩束光路302也方便对超快激光脉冲的激光光束孔径的大小进行调整,使得超快激光脉冲耦合时的孔径角不超过光纤导管2的传导光纤束201中光纤的数值孔径,激光模场面积和光纤导管2的传导光纤束201中光纤纤芯的传导模场面积相匹配,满足模式耦合条件,实现更高效的耦合。

根据本发明的一些实施例,准直扩束光路302包括第一光隔离器,第一光隔离器用于防止后向散射光返回进入超快激光器1,对超快激光器1起到保护作用,避免后向散射光对超快激光器1造成损害,延长超快激光器1的使用寿命。

根据本发明的一些实施例,自由空间耦合模块301为平面聚焦阵列的光学元件,可以理解的是,平面聚焦阵列的光学元件可以将超快脉冲激光汇聚在平面聚焦阵列的光学元件的各个聚焦点上,且各个聚焦点与光纤导管2的传导光纤束201中的各个光纤端面位置一一对应,使得超快激光器1输出的超快激光脉冲能够适配地进入传导光纤束201中,减少了超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率。

根据本发明的一些实施例,自由空间耦合模块301为微透镜阵列或微纳光学器件。微透镜阵列或微纳光学器件均可以将超快脉冲激光汇聚在各自的各个聚焦点上,且各个聚焦点与光纤导管2的传导光纤束201中的各个光纤端面位置一一对应,使得超快激光器1输出的超快激光脉冲能够适配地进入传导光纤束201中,减少了超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率。具体地,微透镜阵列相当于多个排列在同一平面内焦距相同的小透镜,超快激光脉冲形成的光束入射微透镜阵列后,会在微透镜阵列焦平面上形成一系列聚焦光斑,也就是说每个小透镜都有自己的聚焦光斑,这些聚焦光斑与传导光纤束201中的多个光纤一一对应,以将超快激光器1输出的超快激光脉冲对应耦合进入传导光纤束201中的多个光纤中。

根据本发明的一些实施例,当光纤耦合模块3采用光纤模式耦合模块303时,光纤模式耦合模块303包括与超快激光器1相连的激光尾纤输出端3031、第二光纤隔离器3032,激光尾纤输出端3031、第二光纤隔离器3032和传导光纤束201的输入端2011按顺序匹配焊接,第二光纤隔离器3032用于防止后向散射光返回进入超快激光器1。如图2所示,激光尾纤输出端3031、第二光纤隔离器3032和传导光纤束201的输入端2011按顺序匹配焊接,使得超快激光器1输出的超快激光脉冲能够适配地进入传导光纤束201中,减少了超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率。其中,当激光尾纤输出端3031和传导光纤束201的输入端2011的光纤结构相同时,激光尾纤输出端3031和传导光纤束201的输入端2011直接焊接;当激光尾纤输出端3031和传导光纤束201的输入端2011的光纤结构不相同时,传导光纤束201的输入端2011通过拉锥、焊接等过程形成类似于光纤合束器的结构后,再与激光尾纤输出端3031焊接,实现和激光尾纤输出端3031的模式匹配,提高耦合效率。第二光纤隔离器3032对超快激光器1起到保护作用,避免后向散射光对超快激光器1造成损害,延长超快激光器1的使用寿命。

根据本发明的一些实施例,传导光纤束201为低损耗光纤束,以提高超快激光脉冲的传导效率,减少超快激光脉冲在传输过程中的损耗,同时也保证了本发明的利用超快激光供血管腔内治疗的装置1000输出的超快激光脉冲能量的稳定。

根据本发明的一些实施例,低损耗光纤束采用普通阶跃折射率光纤、光子晶体光纤、微结构光纤、空心光纤中的一种或多种构成,可以理解的是,普通阶跃折射率光纤、光子晶体光纤、微结构光纤、空心光纤均具有可以低损耗传输超快激光脉冲的特点,在实际应用中可以根据需要进行选择。另外,低损耗光纤束还可以包括内含多模晶体光纤束,内含多模晶体光纤束的耦合难度低,激光能量衰减少。

根据本发明的一些实施例,传导光纤束201中的光纤在输入端2011处呈矩形排列形式或圆形排列形式并采用第一边框2014固定,以便于进行耦合操作,例如如图3所示,传导光纤束201中的光纤排列形式为m*n的矩形,m的取值范围为8~10,n的取值范围为9~10。传导光纤束201中的光纤在输出端2013处呈环形排列形式(如图4所示)或偏心排列形式(如图5所示)并采用内边框2015和外边框2016进行固定,以及采用保护窗口204进行保护。内边框2015内侧为空腔结构202,以留出手术辅助结构4的设置空间,保护窗口204的设置用于将位于输出端2013的光纤密封在内边框2015和外边框2016之间,保护光纤不受污染,并且超快激光脉冲可以透过保护窗口204射出。可以理解的是,输入端2011处和输出端2013处的光纤数量相等。

优选的,传导光纤束201中的光纤纤芯直径100-125μm,光纤外的包层直径为125-150μm,实际应用性强,耦合方便。

根据本发明的一些实施例,如图1和图2所示,本发明实施例的利用超快激光供血管腔内治疗的装置1000还包括激光检测模块5和控制模块6;激光检测模块5用于从超快激光器1输出的超快激光脉冲中分出小部分光束进行激光参数检测并将检测的数据反馈回控制模块6。可以理解的是,激光检测模块5会根据小部分光束的激光参数以及小部分光束占超快激光脉冲的比例,来计算出超快激光脉冲的实际激光参数,然后将检测的数据反馈会控制模块6,从而控制模块6可以显示检测获得的数据,和/或根据检测的数据对本发明的利用超快激光供血管腔内治疗的装置1000进行控制。控制模块6用于控制利用超快激光供血管腔内治疗的装置1000的开关运行和模式切换,例如工作模式或修正模式,并根据激光检测模块5反馈的数据设定自动或手动方式修正激光参数,以保证激光消蚀过程的安全高效的进行。其中自动方式为由内部电路和程序对反馈的数据进行处理,自动修正超快激光器1错误的激光参数;手动方式为根据显示界面601显示的反馈数据,手动修正超快激光器1错误的激光参数。

根据本发明的一些实施例,如图1所示,当光纤耦合模块3采用自由空间耦合模块301时,激光检测模块5包括分束器501和第一探测器502;分束器501用于从超快激光器1输出的超快激光脉冲中分出小部分光束;例如分束器501可以通过在一定角度下反射部分超快激光脉冲至第一探测器502的方式,实现分出小部分光束的过程。优选的,分束器501的分光比可为99/1。第一探测器502用于对分束器501分出的小部分光束进行激光参数检测并反馈回控制模块6,以实现对超快激光脉冲的激光参数的检测,有效降低了消蚀操作难度并提高对病变进行消蚀过程的安全性。可以理解的是,第一探测器502会根据分束器501的分光比计算超快激光脉冲的实际激光参数,并反馈到装置控制模块6,为自动或手动方式修正超快激光器1的激光参数提供数据。具体地,第一探测器502可以为能量计或第一光功率计。

如图2所示,当光纤耦合模块3采用光纤模式耦合模块303时,激光检测模块5包括检测光纤503和第二探测器504,检测光纤503的一端和传导光纤束201的输入端2011一起与激光尾纤输出端3031匹配焊接,检测光纤503的另一端连接至第二探测器504,第二探测器504根据检测光纤503中的光纤个数占检测光纤503中的光纤个数和传导光纤束201中的光纤个数之和的比例计算光路中的实际激光参数并反馈回控制模块6,以实现对超快激光器1输出的超快激光脉冲的激光参数的检测,有效降低了消蚀操作难度并提高对病变进行消蚀过程的安全性。在一个具体的例子中,可以将传导光纤束201中的2~3根光纤取出作为检测光纤503,并连接到第二探测器504,然后根据检测光纤503中的光纤个数占传导光纤束201中的光纤总个数的比例计算光路中的激光参数,并反馈到装置控制模块6。第二探测器504可以为第二光功率计。

根据本发明的一些实施例,如图8所示,控制模块6包括显示界面601和按键界面602;显示界面601用于显示参数;按键界面602用于设定参数、“工作/修正”模式切换以及“修正”模式下“自动/手动”模式切换,以控制超快激光器1输出超快激光脉冲以及根据激光检测模块5反馈的数据进行自动或手动方式的参数修正,保证超快激光器1的准确和正常使用。具体地,控制模块6的操作界面如图8所示,显示界面601可以为液晶显示界面,按键界面602包括数字按键、“功率”按键、“重复频率”按键、“确认”按键、“开/关”按键、“输出”按键、“工作/修正”按键和“自动/手动”按键,按下和抬起表示不同的功能或操作模式。将数字输入后点击“确认”按键即可对激光参数进行输入设定;“开/关”按键按下代表控制模块6开机,按键抬起代表控制模块6关机;“输出”按键按下代表超快激光脉冲输出,按键抬起代表停止激光脉冲输出;“工作/修正”按键按下代表选择“修正”模式,同时“自动/手动”按键指示灯亮起,按键抬起代表选择“工作”模式,同时“自动/手动”按键指示灯熄灭;“自动/手动”按键按下代表选择“手动”模式,按键抬起代表选择“自动”模式,控制方式简单方便,便于操作。

在具体使用本发明实施例的利用超快激光供血管腔内治疗的装置1000时,如图9所示,首先将控制模块6开机,控制模块6开机后会不断检测超快激光器1是否开机,若超快激光器1开机,则进行控制操作,选择“修正”或者“工作”模式;选择“修正”模式后,进一步对“自动”或者“手动”模式进行选择,选择“自动”模式后,使用按键界面602设定激光参数并输出超快激光脉冲,通过内部电路和程序处理反馈数据,对错误激光参数进行自动修正,选择“手动”模式后,使用按键界面602设定激光参数并输出激光脉冲,根据显示界面601显示的反馈数据,使用按键界面602修正错误的激光参数。

根据本发明的一些实施例,“自动”模式为有内部电路和程序对激光检测模块5反馈的数据进行处理,自动修正错误的激光参数;“手动”模式为根据显示界面601显示的激光检测模块5反馈的数据,通过使用按键界面602手动修正错误的激光参数,从而操作人员可以采用不同的方式对错误的激光参数进行修正,以适应实际中的需要,适用范围广。

根据本发明的一些实施例,如图1和图2所示,光纤导管2上在靠近输出端2013的部位上设有合并接口203,合并接口203与空腔结构202连通,从而手术辅助结构4可以通过合并接口203进入到空腔结构202中;如图6和图7所示,手术辅助结构4包括导丝401和输液管402,导丝401和输液管402用于从合并接口203进入空腔结构202中。导丝401用于将光纤导管2引导至血管腔A内病变B处,使用时,首先将导丝401从合并接口203插入到空腔结构202中,然后光纤导管2的输出端2013便可以沿着导丝401移动,准确快速地到达病变处。输液管402用于向血管腔A内病变B处输送冷却液体、造影剂或/和药物。例如利用输液管402用于向照射区域喷射生理盐水以冷却可能出现的热效应,输注碘造影剂并在透视下观察血管腔A内病变B情况,还可以利用输液管401输送药物以满足手术需要,提高手术治疗效果。

根据本发明的一些实施例,光纤导管2的输出端2013的端面为球面或平面等形状,从而可以避免因输出端2013的端面存在缺陷超快激光脉冲发生严重的散射的情况,降低超快激光脉冲的能量损耗,保证输出端2013的出光效果。优选的,光纤导管2的输出端2013的端面为球面,这样,还可以降低从输出端2013输出的超快激光脉冲的发散角,提高照射的能量密度。

根据本发明的一些实施例,超快激光脉冲的重复频率可根据实际辐射消蚀要求进行调整。

下面给出本发明的一个具体的例子。

在该具体的例子中,利用超快激光供血管腔内治疗的装置1000,包括超快激光器1、光纤导管2、光纤耦合模块3、手术辅助结构4、激光检测模块5和控制模块6;其中,超快激光器1用于产生并输出超快激光脉冲;光纤耦合模块3设置在光纤导管2的输入端2011处,用于耦合超快激光器1输出的超快激光脉冲并将超快激光脉冲传输给光纤导管2的传导光纤束201,传导光纤束201用于接收光纤耦合模块3输给的超快激光脉冲并传输至光纤导管2的输出端2013,由光纤导管2的输出端2013向前输出超快激光脉冲以对血管腔A内病变B进行辐射消蚀,传导光纤束201中的光纤在输入端2011处呈矩形排列形式并采用第一边框2014固定,传导光纤束201中的光纤在输出端2013处呈环形排列形式并采用内边框2015和外边框2016进行固定以及采用保护窗口204进行保护。手术辅助结构4用于设置在光纤导管2的空腔结构202中,将光纤导管2引导至血管腔A内病变B处,以及用于向血管腔A内病变B处输送冷却液体、造影剂或/和药物,激光检测模块5用于从超快激光器1输出的超快激光脉冲中分出小部分光束进行激光参数检测并将检测的数据反馈回控制模块6;控制模块6用于控制利用超快激光供血管腔A内治疗的装置的开关运行和模式切换,并根据激光检测模块5反馈的数据设定自动或手动方式修正激光参数。

控制模块6包括显示界面601和按键界面602;显示界面601用于显示参数;按键界面602用于设定参数、“工作/修正”模式切换以及“修正”模式下“自动/手动”模式切换,以控制超快激光器1输出超快激光脉冲以及根据激光检测模块5反馈的数据进行自动或手动方式的参数修正。“自动”模式为有内部电路和程序对激光检测模块5反馈的数据进行处理,自动修正错误的激光参数;“手动”模式为根据显示界面601显示的激光检测模块5反馈的数据,通过使用按键界面602手动修正错误的激光参数。

光纤导管2上在靠近输出端2013的部位上设有合并接口203,合并接口203与空腔结构202连通;手术辅助结构4包括导丝401和输液管402,导丝401和输液管402用于从合并接口203进入空腔结构202中,导丝401用于将光纤导管2引导至血管腔A内病变B处,输液管402用于向血管腔A内病变B处输送冷却液体、造影剂或/和药物。

该实施例的使用步骤包括,

步骤S1:超快激光器1开机,控制模块6开机,选择“修正”模式,使用按键界面602设定激光参数,输出超快激光脉冲,使用激光检测模块5对实际输出的激光参数进行检测,并反馈回控制模块6进行参数修正,停止输出超快激光;

步骤S2:将手术辅助结构4通过微创介入的方式沿人体血管内部抵达血管腔A内病变B,如血栓和斑块处;

步骤S3:将光纤导管2套在手术辅助结构4上,并沿手术辅助结构4将传导光纤束201的输出端2013伸入血管腔A内,并送至血管腔A内血栓和斑块处;

步骤S4:选择“工作”模式,使用控制模块6的按键界面602对超快激光器1的参数进行设定,输出超快激光脉冲对血管腔A内血栓和斑块进行辐照消蚀;

步骤S5:在消蚀过程中,手术辅助结构4先推进一小段距离,光纤导管2再按实际消蚀速度逐步推进,如此循环往复;

步骤S6:通过手术辅助结构4中的输液管402输入造影剂,观察血管造影,若消蚀难以进行或者血流通路尚未恢复,可参照激光检测模块5反馈到显示界面601的数值,使用控制模块6的按键界面602对激光参数进行微调或者再进行一段时间的照射消蚀;若血流通路恢复,则停止输出超快激光,控制模块6关机,超快激光器1关机,先撤出手术辅助结构4,后撤出光纤导管2。

该具体的例子的利用超快激光供血管腔内治疗的装置,具有如下优点,第一、通过光纤导管2将超快激光脉冲输送至血管腔A内病变B处(例如血栓和斑块)进行辐射消蚀,相比于传统药物和手术治疗方法,具备高度的精准性且对辐照周围组织基本无热损伤,可实现安全高效的血管腔A内消蚀减容效果;第二、采用的超快激光器1便于集成和开发,几乎无需维护,使用成本低,光束能量稳定;第三、使用光纤耦合模块3对超快激光脉冲进行激光能量的耦合传输,使得超快激光脉冲能够适配地进入传导光纤束201中,减少超快激光脉冲的能量损失,提高超快激光脉冲的消蚀效率;第四、手术辅助结构4的设置可显著降低操作者的操作难度,便于操作者的实际消蚀操作和控制,具备较强的普适性。该具体的实施例的其他对应结构的作用和优点与上文中的相同,在此不再赘述。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号