首页> 中国专利> 一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法

一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法

摘要

本发明提供了一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法,涉及矿井采场覆岩损伤分区及高度预测技术领域。本发明的考虑多因素的弱胶结覆岩导水裂隙高度预测方法,包括如下步骤:步骤1、主控因素提炼及部分因素整合;步骤2、损伤‑渗透关系的建立;步骤3、覆岩导水裂隙损伤阈值的确定;步骤4、流变损伤本构关系构建;步骤5、流变损伤本构关系数值实现;步骤6、多种因素组合下弱胶结覆岩导水裂隙发育高度模拟;步骤7、考虑多因素的覆岩导水裂隙高度预测统计公式建立。本发明的考虑多因素的弱胶结覆岩导水裂隙高度预测方法,可对工作面开采弱胶结覆岩导水裂隙高度进行准确预测。

著录项

  • 公开/公告号CN114819314A

    专利类型发明专利

  • 公开/公告日2022-07-29

    原文格式PDF

  • 申请/专利权人 安徽理工大学;

    申请/专利号CN202210398811.6

  • 申请日2022-04-15

  • 分类号G06Q10/04(2012.01);G06F30/28(2020.01);G06F30/20(2020.01);G06F113/08(2020.01);G06F119/14(2020.01);

  • 代理机构青岛锦佳专利代理事务所(普通合伙) 37283;

  • 代理人黄钰

  • 地址 232001 安徽省淮南市山南新区泰丰大街168号

  • 入库时间 2023-06-19 16:12:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-08-16

    实质审查的生效 IPC(主分类):G06Q10/04 专利申请号:2022103988116 申请日:20220415

    实质审查的生效

说明书

技术领域

本发明涉及矿井采场覆岩导水裂隙高度预测技术领域,具体地说是涉及一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法。

背景技术

煤层工作面开采后,覆岩运动变形产生破裂损伤,不同层位的岩层损伤也不尽相同。西部矿区生态环境脆弱,广泛赋存弱胶结岩层,地表下赋含宝贵潜水,煤层开采时,覆岩裂隙容易联通潜水层,导致潜水流失和土地沙化,因此我们需要在开采前对潜水层的安全性进行预断,指导煤层科学保水开采。现阶段,人们一般将运动破裂的覆岩在竖直方向上通常划分为垮落带、裂隙带和弯曲下沉带,其中垮落带和裂隙带一般被视为导水裂隙带,显然这种导水裂隙界定方式不够科学,因为只有当损伤岩层内的裂隙相互联通时,地下水才能通过联通裂隙流失,而产生损伤裂隙但裂隙间没有联通的岩层仍具有隔水能力。因此,判断岩层损伤与渗透能力的关系,进而通过岩层损伤程度鉴别导水裂隙发育高度会更加科学。

众所周知,煤层开采是一项复杂的工程,覆岩导水裂隙的发育受许多因素的影响,包括地质因素、开采因素和时间因素等。对于覆岩导水裂隙的预计方法,目前可选择的包括经验公式法、理论计算法、数值模拟法和数学统计评价法,经验公式法应用最为简便,但缺乏理论依据而且只考虑可采厚一个因素影响,预测精度偏低,理论计算与数值模拟法对覆岩力学条件做了多种简化,影响预测准确性,数学统计方法则需要依赖大量的工程实例,例如曹丁涛等建立了考虑坚硬岩层在覆岩厚度中的占比、采厚、采深、工作面斜长及工作面推进速率5因素的覆岩导水裂隙高度预测公式,其参考的有限实践样本均针对于中东部坚硬岩层矿区,且未考虑岩体力学性质以及时间等因素的影响。考虑到数值模拟操作便捷及数学统计方法适用性强的特点,建立一种通过数值模拟得到多因素影响下覆岩损伤发育结果,再通过数学统计得到预测公式的预测方法,对于指导煤层保水开采更具现实意义。

发明内容

本发明的目的在于提供一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法,可对工作面开采弱胶结覆岩导水裂隙高度进行准确预测。

为了达到上述目的,本发明所采用的技术解决方案如下:

一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法,所述方法包括如下步骤:

步骤1、主控因素提炼及部分因素整合

根据待预测矿井工作面地质水文及开采资料,提炼影响弱胶结覆岩裂隙发育的主控因素,主控因素包括煤层埋藏深度s、煤层开采厚度M、工作面倾斜长度l、地层结构、各岩层厚度、岩体力学性质和岩层运动时间t;

将地层结构、各岩层厚度和岩体力学性质三者用弱胶结岩层综合比例系数b来衡量,b的表达式为:

式中,h

步骤2、损伤-渗透关系的建立

将取自预测矿井工作面不同岩层层位的岩石加工成标准试件,在多场耦合试验系统上进行分级加载三轴压缩-渗透试验,测试整个压缩过程中岩石变形破裂与渗透特性关系,每一级加载时待孔隙水压力稳定后再施加下一级载荷,直至试件完全破坏;

围压根据矿井地应力特征施加,水压以流量控制方式施加,试验过程中监测岩石变形和水通过试件的流量,获得压缩过程中岩石应力-应变和渗流-应变关系;

根据岩石压缩-渗流过程中的应力-应变关系,计算岩石的损伤变量D的演化方程,损伤变量D计算公式:

式中,a,d为与材料性质有关的参数;

以应变为横坐标,以损伤变量和渗透率为纵坐标,绘制损伤-应变和渗透率-应变关系于坐标系中,得到损伤和渗透率的对应关系;

步骤3、覆岩导水裂隙损伤阈值的确定

将渗透率随应变快速增加的裂隙联通岩层称为导水裂隙岩层,将渗透率随应变未达到快速增加之前的裂隙未联通岩层称为非导水裂隙岩层;

对应的,岩体裂隙联通时的损伤值为导水裂隙损伤阈值D

步骤4、流变损伤本构关系构建

考虑岩层运动破坏的时间效应,设置岩石分级加载流变试验,试验设计对岩石的标准试件从相同围压下三轴压缩强度的55%至65%进行第一级加载,此后按5%~10%的应力梯度进行分级加载,直至岩石蠕变失稳破坏为止,试验过程中监测岩石的标准试件随时间的变形数据,得到岩石蠕变曲线;

采用损伤Burgers蠕变模型对岩石蠕变行为进行描述,蠕变模型表达式为:

式中,ε为应变;σ为应力;σ

损伤变量表达式为:

步骤5、流变损伤本构关系数值实现

采用中心差分法推导得到流变损伤本构方程的三维差分格式:

球应力:

偏应力:

式中,

α=2G(1-D

其中,

将本构关系的三维差分格式嵌入到FLAC3D软件中,得到流变损伤本构模型的二次开发程序,用于对岩层变形损伤行为的模拟;

步骤6、多种因素组合下弱胶结覆岩导水裂隙发育高度模拟

设置n种弱胶结岩层综合比例系数b、煤层开采厚度M、工作面倾斜长度l、煤层埋藏深度s组合下覆岩流变损伤破坏范围数值模拟;

首先根据各组下工作面开采及覆岩地质条件,建立数值模型;然后设置边界条件并赋予各模拟岩层力学参数,最后采用步骤5中的二次开发程序对煤层采后覆岩流变破坏情况进行模拟运算;

步骤7、考虑多因素的覆岩导水裂隙高度预测统计公式建立

模拟煤层开采后上覆岩层的变形损伤规律,在运算结束后,从模型自上而下对发生塑性破坏单元体的损伤情况进行调取,通过和导水裂隙损伤阈值对比,确定出n种组合形式下弱胶结覆岩导水裂隙带高度;

根据得到的n种组合形式下弱胶结覆岩导水裂隙带高度,采用多元非线性回归,确定考虑不同因素时严重损伤区高度预计公式:

式中,A、B、C、D、E、F、G为公式的拟合系数。

本发明的有益技术效果是:

本发明

1、本发明通过建立损伤-渗透的关系,从岩体渗透性方面直接界定了导水裂隙带,并给出了岩体裂隙联通时水快速渗透的损伤阈值及覆岩导水裂隙范围确定方法,指导意义更为具体和明显。

2、本发明从地质、开采和时间三方面出发,给出来考虑多种因素的弱胶结覆岩导水裂隙高度预测的统计公式,考虑全面,实现过程便捷,预测精度进一步提高。

3、本发明可通过对比工作面覆岩导水裂隙发育高度与含水层的位置关系,结合相关安全开采规范,判断煤层能否实现保水开采,为矿井煤层安全、保水开采提供依据。

附图说明

图1为本发明实施例的流程图;

图2为本发明实施例渗流-压缩试验示意图;

图3为本发明实施例压缩流变试验示意图;

图4为本发明实施例损伤-渗流-应变关系及导水损伤阈值确定示意图;

图5为本发明实施例覆岩导水裂隙范围示意图;

图6为本发明实施例数值模拟获得损伤区高度示意图;

图7为本发明实施例数值模拟模型示意图。

具体实施方式

为使本发明的目的、技术方案和有益效果更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。本发明某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本发明的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本发明满足适用的法律要求。

在本发明的描述中,需要说明的是,术语“内”、“外”、“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。

本实施例的一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法,请参考图1至图7所示。

以西部鄂尔多斯矿区高家梁煤矿为例,该矿为弱胶结覆岩煤矿。收集该矿待预测工作面地质水文以及开采资料,从地质、开采与时间三个方面总结影响弱胶结覆岩导水裂隙发育的因素。

上述方法包括如下步骤:

步骤1、主控因素提炼及部分因素整合

根据待预测矿井工作面地质水文及开采资料,提炼影响弱胶结覆岩裂隙发育的主控因素,主控因素包括煤层埋藏深度s、煤层开采厚度M、工作面倾斜长度l、地层结构、各岩层厚度、岩体力学性质和岩层运动时间t;

将地层结构、各岩层厚度和岩体力学性质三者用弱胶结岩层综合比例系数b来衡量,b的表达式为:

式中,h

步骤2、损伤-渗透关系的建立

将取自高家梁煤矿工作面2-1煤层顶板的砂质泥岩和中粒砂岩加工成直径50mm、高度100mm的圆柱形标准试件,在多场耦合试验系统上进行分级加载三轴压缩-渗透试验,测试整个压缩过程中岩石变形破裂与渗透特性关系,如图2所示。试验机轴向采用轴向分级加载方式,待孔隙水压力稳定后再施加下一级载荷,全程从低到高逐级加载,直至试件破坏。试验设计峰前加载6~10个等级,峰后加载8~12个等级,围压根据矿井实际设计为1.5MPa、3.0MPa、4.5MPa和6MPa。

围压根据矿井地应力特征施加,水压以流量控制方式施加。

试验过程中保持室内温度在25℃,岩石三轴压缩-渗流试验的具体步骤为:

①岩样饱水处理。将制取的岩石标准试件放在水盆里,淹没试件高度的1/4,浸泡2h,然后加水至试件高度的1/2,2h后,升高水面至试件的3/4处,浸泡2h,再加水全部淹没试件,直至试件质量连续不再变化。

②试件安装。将试件安装在三轴压力室内,如图2所示,试件上下表面加透水板并与试验机上下压头用橡胶管连接密封,安装轴向和环向变形传感器并将其调整到合理量程,封闭三轴压力室内,对传感器数值清零。

③施加围压。向压力室内充油至出油管内没有气泡产生为止,关闭出油管路,施加至预定围压并进行伺服控制。

④三轴室饱和岩样。围压稳定后,以流量控制方式对试件施加0.1mL/min的恒定水压,对岩样进行三轴室内饱和,直到出水口有水流出时加载水压至预定值。

⑤轴向加载。轴压加载采用分级加载,加载速率为0.06mm/min,每级加载后待孔隙水压稳定后再进行下一级加载,直到试件破坏。

试验过程中监测岩石变形和水通过试件的流量,获得压缩过程中岩石应力-应变和渗流-应变关系。渗透率的计算公式为:

式中,q为渗流流量,mL/min,μ为注水粘度,mPa·s,L为试件长度,mm,A为试件截面积,mm

根据岩石压缩-渗流过程中的应力-应变关系,计算岩石的损伤变量D的演化方程,损伤变量D计算公式:

式中,a,d为与材料性质有关的参数;

其中,

式中,υ为岩石的泊松比;E为岩石的弹性模量,GPa;σ

以应变为横坐标,以损伤变量和渗透率为纵坐标,绘制损伤-应变和渗透率-应变关系于坐标系中,得到损伤和渗透率的对应关系,如图3所示。

步骤3、覆岩导水裂隙损伤阈值的确定

将渗透率随应变快速增加的裂隙联通岩层称为导水裂隙岩层,此部分岩层裂隙互相联通导致岩石失去隔水能力;将渗透率随应变未达到快速增加之前的裂隙未联通岩层称为非导水裂隙岩层,此部分岩层裂隙之间未联通,岩层仍具有隔水能力;

对应的,岩体裂隙联通时的损伤值为导水裂隙损伤阈值D

步骤4、流变损伤本构关系构建

考虑岩层运动破坏的时间效应,设置砂质泥岩(弱胶结)和细砂岩(硬岩)分级加载流变试验,试验设计对岩石的标准试件从相同围压下三轴压缩强度的55%至65%进行第一级加载,此后砂质泥岩按3MPa的应力梯度、细砂岩按5MPa的应力梯度进行分级加载,直至岩石蠕变失稳破坏为止。

试验过程中保持室内温度在25℃,岩石三轴压缩流变试验的具体步骤为:

①试件安装。将试件安装在三轴压力室内,如图3所示,试件上下表面与试验机上下压头用橡胶管连接密封,安装轴向和环向变形传感器并将其调整到合理量程,封闭三轴压力室内,对传感器数值清零。

②施加围压。向压力室内充油至出油管内没有气泡产生为止,关闭出油管路,施加至预定围压并进行伺服控制,围压的加载速率为0.05MPa/s。

③轴向加载。轴压加载采用分级加载,加载速率为0.06mm/min,每级加载后待岩石变形稳定后再进行下一级加载,直到试件破坏。

试验过程中监测岩石的标准试件随时间的变形数据,得到岩石蠕变曲线;采用损伤Burgers蠕变模型对岩石蠕变行为进行描述,蠕变模型表达式为:

式中,ε为应变;σ为应力;σ

损伤变量表达式为:

步骤5、流变损伤本构关系数值实现

采用中心差分法推导得到流变损伤本构方程的三维差分格式:

球应力:

偏应力:

式中,

α=2G(1-D

其中,

将本构关系的三维差分格式嵌入到FLAC3D软件中,得到流变损伤本构模型的二次开发程序,用于对岩层变形损伤行为的模拟。

步骤6、多种因素组合下弱胶结覆岩导水裂隙发育高度模拟

设置n(n>20)种弱胶结岩层综合比例系数b、煤层开采厚度(等效采厚)M、工作面倾斜长度(工作面长度)l、煤层埋藏深度(采深)s组合下覆岩流变损伤破坏范围数值模拟,如表1所示。

表1

首先根据各组下工作面开采及覆岩地质条件,建立数值模型,如图7所示;然后设置边界条件并赋予各模拟岩层力学参数,最后采用步骤5中的二次开发程序对煤层采后覆岩流变破坏情况进行模拟运算,直至运算达到平衡状态为止。

步骤7、考虑多因素的覆岩导水裂隙高度预测统计公式建立

模拟煤层开采后上覆岩层的变形损伤规律,在运算结束后,从模型自上而下对发生塑性破坏单元体的损伤情况进行调取,通过和导水裂隙损伤阈值对比,确定出n种组合形式下弱胶结覆岩导水裂隙带高度;

根据得到的n种组合形式下弱胶结覆岩导水裂隙带高度,采用多元非线性回归,确定考虑不同因素时严重损伤区高度预计公式:

式中,A、B、C、D、E、F、G为公式的拟合系数。

至此,已经结合附图对本实施例进行了详细描述。依据以上描述,本领域技术人员应当对本发明一种考虑多因素的弱胶结覆岩导水裂隙高度预测方法有了清楚的认识。本发明通过建立损伤-渗透的关系,从岩体渗透性方面直接界定了导水裂隙带,并给出了岩体裂隙联通时水快速渗透的损伤阈值及覆岩导水裂隙范围确定方法,指导意义更为具体和明显。本发明从地质、开采和时间三方面出发,给出来考虑多种因素的弱胶结覆岩导水裂隙高度预测的统计公式,考虑全面,实现过程便捷,预测精度进一步提高。本发明可通过对比工作面覆岩导水裂隙发育高度与含水层的位置关系,结合相关安全开采规范,判断煤层能否实现保水开采,为矿井煤层安全、保水开采提供依据。

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号