首页> 中国专利> 一种基于XGBoost的电子式互感器量测误差状态评估方法及装置

一种基于XGBoost的电子式互感器量测误差状态评估方法及装置

摘要

本发明涉及量测技术领域,具体的是一种基于XGBoost的电子式互感器量测误差状态评估方法及装置,方法包括以下步骤:获取输入特征数据集和电子式互感器真实的比差、角差数据;对输入数据做Min‑max数据标准化处理;根据输入特征变量数据集,产品特征数据和环境特征数据,训练基于XGBoost的电子式互感器量测误差状态评估模型;向模型输入特征数据,得到电子式互感器预测的比差和角差;构建基于电子式互感器角差和比差的量测误差等级体系;确定电子式互感器的量测误差等级。装置包括电子式互感器量测误差状态评估模型训练模块和电子式互感器量测误差等级体系模块,解决了在运电子式互感器误差状态评估的问题,评估电子式互感器测量数据用于工程的可靠性及风险。

著录项

  • 公开/公告号CN113297797A

    专利类型发明专利

  • 公开/公告日2021-08-24

    原文格式PDF

  • 申请/专利权人 东南大学;

    申请/专利号CN202110615294.9

  • 发明设计人 刘西昂;储娜娜;张娅楠;李志;

    申请日2021-06-02

  • 分类号G06F30/27(20200101);G06Q10/04(20120101);G06Q10/06(20120101);G06K9/62(20060101);G01R35/02(20060101);

  • 代理机构11357 北京同辉知识产权代理事务所(普通合伙);

  • 代理人苗苗

  • 地址 210024 江苏省南京市玄武区新街口街道四牌楼2号

  • 入库时间 2023-06-19 12:19:35

说明书

技术领域

本发明涉及量测技术领域,具体的是一种基于XGBoost的电子式互感器量测误差状态评估方法及装置。

背景技术

电子式互感器是一种配电装置,由连接到传输系统和二次转换器的一个或多个电压或电流传感器组成,用以传输正比于被测量的量,供给测量仪器、仪表和继电保护或控制装置。电子式互感器的诞生是互感器传感准确化、传输光纤化和输出数字化发展趋势的必然结果,电子式互感器目前已经成为数字变电站的关键装备之一。

然而,为了评估在运电子式互感器的误差问题,往往需要与传统电磁式标准互感器进行误差比对,这难以适应电子式互感器规模化应用场景下误差状态分析。由于缺乏电子式互感器量测误差状态评估手段,制约了电子式互感器和变电站数字化的发展进程,若因未及时发现电子式互感器的隐患而造成电力事故,则会造成巨大的经济损失,同时也会降低用户的满意度。

发明内容

为解决上述背景技术中提到的不足,本发明的目的在于提供一种基于XGBoost的电子式互感器量测误差状态评估方法及装置,解决了电子式互感器量测误差难以评估的难题。

本发明的目的可以通过以下技术方案实现:

一种基于XGBoost的电子式互感器量测误差状态评估方法,包括以下步骤:

步骤一:获取输入特征数据集和电子式互感器真实的比差、角差数据;

步骤二:根据输入特征变量数据集,即电气特征数据,产品特征数据和环境特征数据,训练基于XGBoost的电子式互感器量测误差状态评估模型;

步骤三:向训练好的基于XGBoost的电子式互感器量测误差状态评估模型,输入电子式互感器的特征数据,得到电子式互感器的角差和比差;

基于电子式互感器误差的国家标准构建电子式互感器的量测误差等级体系,通过电子式互感器的角差和比差的预测值与电子式互感器的量测误差等级体系比对,最终确定电子式互感器的量测误差等级。

进一步地,所述步骤一的具体步骤如下:

1)、获取电子式互感器的电气特征数据,电流I、电压U、电网频率f数据;

2)、获取电子式互感器的产品特征数据,包括实验室基本误差A和投运时间t;

3)、获取电子式互感器的环境特征数据,包括环境温度T、环境湿度H、智能变电站空间磁场B、电子式互感器运行环境的振动V;

4)、进输入数据进行Min-max标准化;

5)、计算电子式互感器的真实比差和角差数据。

进一步地,所述步骤2)中的具体计算方法如下:

若针对电子式电压互感器,S

若针对电子式电压互感器,S

若针对电子式电压互感器,S

进一步地,所述步骤4)中的具体计算公式如下:

其中,minA和maxA分别为属性A的最小值和最大值,x为输入特征数据的原始值,x’为标准化后的输入特征值。

进一步地,所述步骤5)中的具体计算公式如下:

JC=(J-J')*60 (3)

其中,BC为比差,B为电子互感器测量电压(电流)幅值,B’为传统电磁式标准互感器电压(电流)幅值,无量纲;

JC为角差,J为电子互感器测量电压(电流)相位,J’为传统电磁式标准互感器电压(电流)相位,单位为分;

针对电子式电压互感器,比差和角差为在80%~120%的额定电压和功率因数0.8(滞后)的25%~100%的额定负荷下,其额定频率时测得;

针对电子式电流互感器,比差和角差为在1%~120%的额定电流下,其额定频率下测得。

进一步地,所述电子式互感器量测误差状态评估模型采用XGBoost回归模型,输入为电子式互感器的电压、电流,产品特征和环境特征,采用电子式互感器的真实角差和比差作为标签,输出为电子式互感器角差和比差的预测值。

进一步地,所述步骤二包括以下步骤:

1)、将输入特征变量数据集的70%作为训练集,剩下30%作为测试集:

训练集用于模型的学习,将每组电子式互感器工作时的电气特征数据,包括电压U、电流I、电网频率f,产品特征数据,包括实验室基本误差A、投运时间t,环境特征数据,包括环境温度T、环境湿度H、智能变电站空间磁场B、电子式互感器运行环境的振动V作为模型的输入样本,输入样本的标签为真实的比差和角差;

2)、训练模型,优化参数:

利用程序内置的交叉验证函数,划分30%为验证集,70%为训练集,计算每次迭代的误差值依次确定最佳的树的最大深度(max-depth)、迭代次数(num-round)和收缩步长(eta);

3、使用测试集验证本模型的预测效果:

将输入特征变量数据集输入训练好的模型,得到电子式互感器预测的角差和比差,与真实的比差和比差作比较,模型越好,误差越小;模型越差,则误差越大,采用平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、平均绝对百分误差(MAPE)四种评价指标作为模型预测效果判断的根据,计算方法如下:

进一步地,所述电子式互感器量测误差的等级体系,在电子式互感器误差国家标准的基础上,把电子式互感器的风险等级分为极低、低、较低、高、极高5个等级,如下表所示:

其中,风险等级由比差和角差中较大的误差决定,即取比差和角差中较高的风险等级。

进一步地,所述步骤二中的环境特征数据如下表所示。

一种基于XGBoost的电子式互感器量测误差状态评估装置,所述评估装置包括:

基于XGBoost的电子式互感器量测误差状态评估模型训练模块,用于根据电子式互感器电流、电压数据、产品特征数据以及环境特征数据,训练基于XGBoost的电子式互感器量测误差状态评估模型;

电子式互感器量测误差等级体系模块,用于根据电子式互感器误差国家标准构建风险等级体系,通过电子式互感器的预测比差和角差,确定在运电子式互感器的量测误差等级。

本发明的有益效果:

1、本发明利用电子式互感器的电流、电压值,结合产品特征和环境特征数据,构建电子式互感器的量测误差状态评估模型和量测误差等级体系,通过预测角差和比差进行电子式互感器的量测误差状态评估,能够在不依赖传统电磁式标准互感器的条件下,解决在运电子式互感器误差状态评估的问题,评估电子式互感器测量数据用于工程的可靠性及风险;

2、本发明可预测在现场运行的电子式互感器的量测误差,并且确定电子式互感器的量测误差等级;

3、本发明通过构建电子式互感器量测误差等级体系,利用量测误差等级清晰表达了电子式互感器量测误差的程度,比角差、比差的数字更为直观。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;

图1是本发明基于XGBoost的电子式互感器量测误差状态评估方法流程示意图;

图2是本发明测试集中比差的实际值与预测值的偏差情况示意图;

图3是本发明测试集中角差的实际值与预测值的偏差情况示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

一种基于XGBoost(Extreme GradientBoosting)的电子式互感器量测误差状态评估方法,包括以下步骤:

步骤一:获取输入特征数据集和电子式互感器真实的比差、角差数据,具体步骤包括:

1)、获取电子式互感器的电气特征数据,包括电压U、电流I和电网频率f;

2)、获取电子式互感器的产品特征数据,包括实验室基本误差A和投运时间t,计算方法如下:

若针对电子式电压互感器,S

若针对电子式电压互感器,S

若针对电子式电压互感器,S

3)、获取电子式互感器的环境特征数据,包括环境温度T、环境湿度H、智能变电站空间磁场B、电子式互感器运行环境的振动V;

4)、输入数据Min-max数据标准化,具体计算公式如下:

其中,minA和maxA分别为属性A的最小值和最大值,x为输入特征数据的原始值,x’为标准化后的输入特征值。

5)、计算电子式互感器的真实比差和角差数据,具体计算公式如下:

JC=(J-J')*60 (3)

其中,BC为比差,B为电子互感器测量电压(电流)幅值,B’为传统电磁式标准互感器电压(电流)幅值,无量纲;

JC为角差,J为电子互感器测量电压(电流)相位,J’为传统电磁式标准互感器电压(电流)相位,单位为分;

针对电子式电压互感器,比差和角差为在80%~120%的额定电压和功率因数0.8(滞后)的25%~100%的额定负荷下,其额定频率时测得;

针对电子式电流互感器,比差和角差为在1%~120%的额定电流下,其额定频率下测得。

步骤二:根据输入特征变量数据集,即电子式互感器电压、电流值,产品特征数据和环境特征数据,训练基于XGBoost的电子式互感器量测误差状态评估模型;

电子式互感器量测误差状态评估模型,采用XGBoost回归模型,输入为电子式互感器的电压、电流,产品特征和环境特征,采用电子式互感器的真实角差和比差作为标签,输出为电子式互感器角差和比差的预测值,XGBoost是一种提升树模型,通过不断迭代,生成一棵新树拟合前一棵树的残差,随着迭代次数的增多,精度不断提高。基于XGBoost的电子式互感器量测误差状态评估模型,具体步骤包括:

1)、将输入特征变量数据集的70%作为训练集,剩下30%作为测试集。

训练集用于模型的学习,将每组电子式互感器工作时的电气特征数据,包括电压U、电流I和电网频率f,产品特征数据,包括实验室基本误差A、投运时间t,环境特征数据,包括环境温度T、环境湿度H、智能变电站空间磁场B、电子式互感器运行环境的振动V作为模型的输入样本,对输入样本进行Min-max数据标准化,输入样本的标签为真实的比差和角差。

2)、训练模型,优化参数。

XGBoost的参数可以分为三种类型:通用参数(General Parameters)、增强参数(BoosterParameters)以及学习目标参数(Task Parameters)。本发明中的电子式互感器量测误差预测问题属于回归问题,构建的XGBoost模型目标函数选择多回归函数。对XGBoost模型结果影响最大的是树的最大深度(max-depth)、迭代次数(num-round)和收缩步长(eta),需要对其进行调参,其它参数采用默认值。利用程序内置的交叉验证函数,划分30%为验证集,70%为训练集,计算每次迭代的误差值依次确定最佳的树的最大深度(max-depth)、迭代次数(num-round)和收缩步长(eta)。

3、使用测试集验证本模型的预测效果。

将输入特征变量数据集输入训练好的模型,得到电子式互感器预测的角差和比差,与真实的比差和比差作比较。模型越好,误差越小;模型越差,则误差越大。本发明采用平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、平均绝对百分误差(MAPE)四种评价指标作为模型预测效果判断的根据。计算方法如下:

步骤三:向训练好的基于XGBoost的电子式互感器量测误差状态评估模型,输入电子式互感器的特征数据,得到电子式互感器的角差和比差;基于电子式互感器误差的国家标准构建电子式互感器的量测误差等级体系,如表1所示;通过电子式互感器的角差和比差的预测值与电子式互感器的量测误差等级体系比对,最终确定电子式互感器的量测误差等级。

表1:电子式互感器量测误差等级体系

电子式互感器量测误差等级体系,在电子式互感器误差国家标准的基础上,把电子式互感器的风险等级分为极低、低、较低、高、极高5个等级。其中,风险等级由比差和角差中较大的误差决定,即取比差和角差中较高的风险等级。

电子式互感器量测误差状态评估方法能够在不依赖传统电磁式标准互感器的条件下,解决在运电子式互感器误差状态评估的问题,评估电子式互感器测量数据用于工程的可靠性及风险。输入经过Min-max数据标准化的电子式互感器的电气特征数据(电压U、电流I和电网频率f),产品特征数据(实验室基本误差A和投运时间t)和环境特征数据(环境温度T、环境湿度H、智能变电站空间磁场B、电子式互感器运行环境的振动V),便可得到在运电子式互感器的角差和比差,从而进一步确定电子式互感器的量测误差等级,为电子式互感器测量数据用于工程的可靠性及风险做出一定的参考。

其中,环境特征数据如下所示:

环境特征

如图2和3所示,测试集样本为90个,图为测试集中比差和角差的实际值与预测值的偏差情况,比差的最大相对误差为3.33%,角差的最大相对误差为3.93%。其对应的评价指标MAE=248.26,MSE=100083.65,RMSE=316.36,MAPE=3.45%。

测试集样本比差和角差预测值对应的量测误差等级和真实的量测误差等级占比情况如下表所示:

表2:真实量测误差等级和预测风险等级占比

本发明应用于评估现场运行的电子式互感器的量测误差,并确定其量测误差等级。本发明提出了一种基于XGBoost的电子式互感器量测误差状态评估方法,模型训练完成后,输入电子式互感器的特征变量数据,便可得到在现场运行的电子式互感器比差与角差的预测值,进一步获取电子式互感器的量测误差等级,从而评估电子式互感器应用于工程的运行可靠性和风险。

一种基于XGBoost的电子式互感器量测误差状态评估装置,包括:

基于XGBoost的电子式互感器量测误差状态评估模型训练模块,用于根据经过Min-max数据标准化之后的电子式互感器电流、电压数据、产品特征数据以及环境特征数据,训练基于XGBoost的电子式互感器量测误差状态评估模型;

电子式互感器量测误差等级体系模块,用于根据电子式互感器误差国家标准构建风险等级体系,通过电子式互感器的预测比差和角差,确定在运电子式互感器的量测误差等级,基于XGBoost的电子式互感器量测误差状态评估模型训练模块和电子式互感器量测误差等级体系模块相连接。

产品特征数据包括:实验室基本误差A、投运时间t。实验室基本误差A计算方法如下:

其中,若针对电子式电压互感器,S

若针对电子式电压互感器,S

若针对电子式电压互感器,S

电子式互感器量测误差状态评估模型训练模块,采用XGBoost的回归模型,输入为电子式互感器的电压、电流,产品特征和环境特征,输出为电子式互感器角差和比差的预测值。

电子式互感器量测误差等级体系模块,构建方法如下所示:

表3:电子式互感器量测误差等级体系

其中,风险等级由比差和角差中较大的误差决定,即取比差和角差中较高的风险等级。

本发明应用于评估现场运行的电子式互感器的量测误差,并确定其量测误差等级。本发明提出了一种基于XGBoost的电子式互感器量测误差状态评估装置,输入电子式互感器的特征变量数据,便可输出在现场运行的电子式互感器比差与角差的预测值,进一步获取电子式互感器的量测误差等级,从而评估电子式互感器应用于工程的运行可靠性和风险。

以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号