首页> 中国专利> 一种高炉风口回旋区边界的计算及实时监测方法

一种高炉风口回旋区边界的计算及实时监测方法

摘要

本发明提供一种高炉风口回旋区边界的计算及实时监测方法,涉及高炉炼铁工艺技术领域。该方法首先根据高炉风口回旋区的形成原理,建立回旋区的深度计算模型,进而得到回旋区深度的计算公式,获得回旋区深度的变化规律;再通过高炉风口回旋区的深度模型建立高炉风口回旋区的边界模型,确定回旋区边界的计算公式;然后获得建模参数,分析建模参数对回旋区边界模型的影响,确定影响回旋区边界的主要参数;最后利用回旋区边界计算公式求出回旋区的高度;当回旋区高度或回旋区深度超出设定范围时,通过调节鼓风风压和鼓风风量使回旋区高度或深度恢复至正常范围内。该方法能够实时监测回旋区深度和回旋区边界的变化情况,为高炉的实际生产提供安全指导。

著录项

  • 公开/公告号CN113283079A

    专利类型发明专利

  • 公开/公告日2021-08-20

    原文格式PDF

  • 申请/专利权人 东北大学;

    申请/专利号CN202110566801.4

  • 发明设计人 刘培晟;李豪;张颖伟;冯琳;

    申请日2021-05-24

  • 分类号G06F30/20(20200101);G06F113/08(20200101);G06F119/08(20200101);

  • 代理机构21109 沈阳东大知识产权代理有限公司;

  • 代理人李珉

  • 地址 110819 辽宁省沈阳市和平区文化路3号巷11号

  • 入库时间 2023-06-19 12:18:04

说明书

技术领域

本发明涉及高炉炼铁工艺技术领域,尤其涉及一种高炉风口回旋区边界的计算及实时监测方法。

背景技术

在高炉炼铁生产中,通过高炉风口高温高速的空气被鼓入高炉内,由于鼓风的作用,在风口前沿附近形成一个焦炭在其内作循环运动的区域即为高炉风口回旋区。其中风口回旋区位于竖炉炉体下部风口前端,是由焦炭和喷入炉内的辅助燃料与鼓风中的氧进行剧烈的燃烧反应形成的。鼓风和煤气的混合气流在此区域内循环运动,同时伴随着细小焦炭颗粒和未燃尽煤粉的高速旋转,以及碎焦在回旋过程中的烧尽过程。回旋区大小与鼓风参数及原燃料条件等因素有直接关系,是热能和气体还原剂的发源地,为整个高炉生产提供热量和能量的补给,风口回旋区的深度和内部复杂的物理、化学反应决定了高炉中煤气流的一次分布及上部炉料的下降状态,反映了焦炭的燃烧状态,是炉况顺行的基础,在冶炼过程中起着至关重要的作用。

高炉风口回旋区的特征的研究主要可以分为两大方面:回旋区特征的直接法研究和回旋区特征的间接法研究。一是高炉风口回旋区特征的直接研究法是通过对表示高炉回旋区放的相关参数的直接检测来进行研究,主要集中在对回旋区的大小、形状及温度等参数的直接测量,但是存在仪表设备易受炉内实际环境影响而导致测量结果波动较大,同时仪器成本较高,而且无法达到实时监测的目的,无法在中小企业中完全普及。直接研究法又分为经验观察法研究和实测法研究;二是高炉回旋区特征的间接研究法即模型研究法,包括以下两个方面:其一是通过建立高炉风口回旋区的物理参数实验模型,针对高炉风口回旋区特征,在模型上进行实验检测,但是由于回旋区内部存在但由于回旋区内部的反应复杂多变,冷态模型不能很好的反映实际的回旋区内部状态;较为常用的方法是依据回旋区运动过程中动量、质量和热量的传输建立欧拉数学模型求解,但是采用现有的欧拉模型建模过程复杂,需要的参数较多,计算困难,花费时间较长,难以实现实时监测的目的的反应,实验模型不能很好的反映实际的回旋区内部状态,较为常用的方法是依据回旋区运动过程中动量、质量和热量的传输建立欧拉数学模型求解,但是采用现有的欧拉模型建模过程复杂,需要的参数较多,计算困难,花费时间较长,难以实现实时监测的目的;其二是利用建立了的高炉风口回旋区的二维或者三维数学模型,对回旋区内的化学反应过程进行数值模拟,从而达到研究回旋区的特征变化规律的目的。

发明内容

本发明要解决的技术问题是针对上述直接测量法和实验模型法技术存在的不足并在对机理数学模型上进行改进,提供一种高炉风口回旋区边界的计算及实时监测方法,在回旋区深度模型的基础上通过在回旋区边界处各点建立二力的平衡方程,能够高效实时的求解回旋区的边界的变化情况,获得回旋区边界的变化规律,研究回旋区内部参数对回旋区深度以及高度的影响,以及通过控制鼓风参数调节回旋区的深度以及高度的变化,为高炉的稳定运行提供可靠保障。

为解决上述技术问题,本发明所采取的技术方案是:一种高炉风口回旋区边界的计算及实时监测方法,包括以下步骤:

步骤1、根据高炉风口回旋区的形成原理,建立回旋区的深度计算模型,进而得到回旋区深度的计算公式,获得回旋区深度的变化规律;

当回旋区空穴处于稳定运动状态时,取回旋区内部最深处一微元区域A为研究对象,此时A处在鼓风气体冲力与焦炭层阻力共同作用下达到平衡,依据二力平衡建立回旋区的深度计算模型,用以求解回旋区深度的变化情况,如下公式所示:

其中,F

由上述回旋区深度的计算模型得到回旋区深度的计算公式为:

其中,K、β均为待定系数,ρ

步骤2、通过高炉风口回旋区的深度计算模型建立高炉风口回旋区的边界模型,确定回旋区边界的计算公式;

当回旋区内部运动处于稳定状态时,任意取回旋区边界点B为研究对象,此时边界点B处在鼓风气体冲力与焦炭层阻力共同作用下达到平衡,依据二力平衡建立回旋区边界处任意一点的数学模型,用以求解回旋区边界的变化情况:

其中,

M

S

其中,F

因为回旋区最深处到回旋区上的任意一点的边界上是曲线形状,所以设定L=(D

由上述回旋区边界点处的数学模型进一步得到回旋区边界的计算公式为:

K

其中,

其中,K

步骤3、获得建模参数,分析建模参数对回旋区边界模型的影响,确定影响回旋区边界的主要参数;

根据回旋区边界模型以及建模涉及到的相关参数,由回旋区边界变化规律可知鼓风参数中的鼓风风压P和鼓风风量V

步骤4、利用回旋区边界计算公式求出回旋区的高度;

对回旋区边界计算公式的变量h进行求导,并将求导的结果等于零就求出回旋区在竖直方向上的最大值,即回旋区的高度,如下公式所示:

其中,G是回旋区的高度,K

步骤5、当回旋区高度或回旋区深度超出设定范围时,通过调节鼓风风压P和鼓风风量V

采用上述技术方案所产生的有益效果在于:本发明提供的一种高炉风口回旋区边界各点的计算及实时监测方法,首先确定回旋区深度模型,并在该模型的基础上,利用物理原理以及化学原理推导出回旋区边界上任意一点的数学模型,通过这个数学模型就可以直观的反应高炉风口回旋区的口袋形状,并成功引入回旋区温度这个变量,获取影响回旋区深度和边界的两个鼓风参数为鼓风风压和鼓风温度,研究这两个参数对回旋区深度和回旋区边界变化的影响,以及当回旋区深度和边界发生不合理变化时,通过及时调节这两个参数,使回旋区深度和边界恢复至正常范围内;本发明方法能够实时监测回旋区深度和回旋区边界的变化情况,为高炉的实际生产提供安全指导,以保障企业的生命财产安全。

附图说明

图1为本发明实施例提供的高炉风口回旋区形成示意图;

图2为本发明实施例提供的回旋区的深度计算模型建模示意图,其中,(a)为回旋区深度机理模型建模整体示意图,(b)为风口的正向截面图;

图3为本发明实施例提供的回旋区边界模型建模示意图;

图4为本发明实施例提供的回旋区深度变化规律示意图;

图5为本发明实施例提供的回旋区高度变化规律示意图。

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。

高炉风口回旋区形成如图1所示,高炉炼铁过程中,鼓风离开风口时具有很强的动能,它吹动风口前的焦炭并与之发生燃烧反应,在风口前缘形成一疏松且近似呈椭圆形的气相空穴。另外风口前的煤气流以回旋区为放射中心,分别沿长径向炉缸中心发展,沿短径向两侧发展,与此同时自空穴上部和两侧不断有新的焦炭补充近来使得焦碳在空腔内作回旋运动,这个区域为高炉风口回旋区。本实施例以4000m

本发明实施例中,在回旋区深度计算模型的基础上研究对象为回旋区边界处上任意一点B,通过对B处进行受力分析并与最深点进行比较,建立回旋区边界模型,并基于回旋区边界模型进行回旋区边界的监测。

一种高炉风口回旋区边界各点的计算及实时监测方法,包括以下步骤:

步骤1、根据高炉风口回旋区的形成原理,建立回旋区的深度计算模型,如图2所示,进而得到回旋区深度的计算公式,获得回旋区深度的变化规律;

当回旋区内部运动处于稳定状态时,取回旋区内部最深处一区域A为研究对象,此时A处在鼓风气体冲力与焦炭层阻力共同作用下达到平衡,依据二力平衡建立回旋区的深度计算模型,用以求解回旋区深度的变化情况,如下公式所示:

其中,F

由上述回旋区的深度计算模型得到回旋区深度的计算公式为:

其中,K、β均为待定系数;

本实施例在经过大量试验验证后,最终求得回旋区深度的计算公式为:

步骤2、通过高炉风口回旋区的深度计算模型建立高炉风口回旋区的边界模型,确定回旋区边界的计算公式;

当高炉回旋区的风口鼓风从风口吹到最深处时,鼓风会向上、向下继续行进知道直到风口回旋区的最高处,所以可以把从高炉风口回旋区最深处作为向上鼓风的风源继续推导模型,鼓风从风口回旋区最深处开始向上吹出风口回旋区的空腔直到回旋区的最高处,在高炉风口回旋区深度计算模型的建立公式的基础上,由于鼓风在回旋区边界的损失再利用力平衡原理可以推导出边高炉风口回旋区界各点的边界模型。

高温鼓风从风口吹入后,其行程近似为一个圆锥形管道到达回旋区最深处A点,之后鼓风转而向上运动,在距离回旋区风口水平距离x米、距离回旋区风口垂直距离h米的位置形成一块微元区域B,其截面积为S

F

式中,M

M

其中,ρ

对L进行进一步的讨论,因为回旋区最深处到回旋区上的任意一点的边界上是曲线形状,所以假设L=(D

U

式中,M

S

式中,W

S

式中,D

联立(3)、(4)式可以进一步推出B处鼓风气体冲力F

实验证明回旋区深度D

式中,α为一常数,α=0.2~0.6;

设定S

联立(5)、(8)、(9)式可以推出:

最后,将表达式(10)代入表达式(7)可以得到B处鼓风气体冲力F

F

式中,ρ

式中,μ

最后将表达式(11)、(12)、(13)代入表达式(1),可以求得回旋区边界的计算公式为:

K

其中,

其中,K

利用上述回旋区边界的计算公式,可以进一步建立回旋区的数学模型,研究回旋区边界的变化趋势。

步骤3、获得建模参数,分析建模参数对回旋区边界模型的影响,确定影响回旋区边界的主要参数;

根据如图3所示的回旋区边界模型以及建模涉及到的相关参数,由回旋区边界变化规律可知鼓风参数中的鼓风风压P和鼓风风量V

本实施例中,回旋区边界模型建模过程中用到的相关参数如表1所示:

表1回旋区边界模型建模过程中用到的相关参数

步骤4、利用回旋区边界计算公式求出回旋区的高度;

对回旋区边界计算公式的变量h进行求导,并将求导的结果等于零就求出回旋区在竖直方向上的最大值,即回旋区的高度,如下公式所示:

其中,G是回旋区的高度,K

本实施例在经过大量试验验证后,最终求得K

步骤5、当回旋区高度或回旋区深度超出设定范围时,通过调节鼓风风压P和鼓风风量V

本实施例中,高炉平稳运行下回旋区深度变化和高度变化如图4所示,其中建模所用参数和数据全部来自于4000m

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号