首页> 中国专利> 复杂地形下校正标准k-ε模型可调参数方法、装置及存储介质

复杂地形下校正标准k-ε模型可调参数方法、装置及存储介质

摘要

本发明公开了一种复杂地形下校正标准k‑ε模型可调参数方法、装置及存储介质,属于风电机组尾流计算技术领域。首先在复杂地形的迎风面和背风面分别设置风速测量装置,测得实际地形下相应区域的速度分布;然后对复杂地形建模并划分网格,按照得到的速度分布设置边界条件,采用标准k‑ε湍流模型进行计算;最后根据实测数据与计算结果之间的误差,进行拟合响应曲面实验设计,通过多组数据进行拟合,选取最优的可调参数取值。本发明能够定性的观测到每个可调参数对分离流动结果的影响,并综合考虑,得到与实验值或观测值最贴近的可调参数取值。该方法弥补了采用默认参数和传统修正方法计算不准确的不足,充分考虑了不同地表特征的影响。

著录项

说明书

技术领域

本发明属于风电机组尾流计算技术领域,具体涉及一种复杂地形下校正标准k-ε模型可调参数方法、装置及存储介质。

背景技术

风能是一种清洁的可再生资源,因此,风力发电技术近几年来在我国得到了快速发展,并推动了风电场的大量建设。早起的风电厂大多建设在风力资源丰富、地形较为平坦的地方,但是随着风电场的规模越来越大、数量越来越多、风电场开始建设在复杂地形区域。因此,采用标准线性模型模拟风电场条件,不能很好地再现复杂地形的风资源条件。而采用CFD技术进行模拟则变得越来越常见并且有良好的应用前景。综合考虑计算精度,运算时长,以及计算资源等条件,雷诺时均法仍是目前最经济最普遍的计算方法。考虑地表粗糙度的影响,采用带有壁面函数的标准k-ε湍流模型是目前工程计算中普遍采用的方法。

标准k-ε湍流模型中包含5个可调整的参数C

发明内容

为了解决上述现有技术中存在的缺陷,本发明的目的在于提供一种复杂地形下校正标准k-ε模型可调参数方法、装置及存储介质,弥补了采用默认参数和传统修正方法计算不准确的不足,得到与实验值或观测值最贴近的可调参数取值。

本发明是通过以下技术方案来实现:

一种复杂地形下校正标准k-ε模型可调参数方法,包括以下步骤:

步骤1:在复杂地形的迎风面和背风面分别设置风速测量装置,测得实际地形下相应区域的速度分布;

步骤2:对复杂地形建模并划分网格,按照步骤1得到的速度分布设置边界条件,采用标准k-ε湍流模型进行计算;

步骤3:根据实测数据与步骤2计算结果之间的误差,进行实验设计,通过多组数据进行响应面拟合,根据响应面选取最优的可调参数取值。

优选地,步骤1中,风速测量装置采用地面激光测风雷达。

优选地,步骤1中,背风面的风速测量装置设在流动分离区。

优选地,步骤2具体为:对复杂地形建模并用前处理软件生成计算域网格,按照步骤1得到的速度分布设置相应的边界条件,采用CFD软件中的标准k-ε湍流模型进行计算;针对可调参数划定合理的取值范围,每个可调参数在取值范围内均匀取若干个值,进行正交试验;对计算结果中未发生流动分离、流动分离区域过小或分离区速度不收敛的计算结果进行分析比较,初步确定造成上述影响的可调参数上下限,进而缩小各可调参数的取值范围;在新的取值范围内重复上述步骤2,进一步缩小可调参数的取值范围,剔除不合理的计算结果,剩下的计算结果等待处理。

进一步优选地,建模是采用三维建模软件进行的。

优选地,步骤3具体为:将风速测量装置的设置位置作为参考位置,提取步骤2得到的计算结果中从地面至山体高度处的速度廓线,进行离散,与同位置同高度处的实测数据对比,求均方差,作为修正可调参数的目标函数;将得到的均方差进行Box-Behnken实验设计,得到单个因素对实验结果的影响以及最优的可调参数取值。

优选地,将步骤3得到的最优的可调参数取值代入步骤2的标准k-ε湍流模型进行计算,验证是否符合实测数据,当误差大时进行微调。

与现有技术相比,本发明具有以下有益的技术效果:

本发明公开的复杂地形下校正标准k-ε模型可调参数方法,通过在复杂地形的迎风面和背风面分别设置风速测量装置,就能完成复杂地形风资源监测,极大地节约了人力物力资源。通过迎风面的风速测量,可获得复杂地形下的进口边界条件;背风处的风速测量受到流动分离影响较大,可作为可调参数校正后的试验数据,评估可调参数的修正对复杂地形风速模拟的影响。采用标准k-ε湍流模型进行计算后,根据实测数据与步骤2计算结果之间的误差,进行拟合响应曲面实验设计,能够针对误差最大的分离区进行响应面分析,从而可以定性的观测到每个可调参数对分离流动结果的影响,并综合考虑,得到与实验值或观测值最贴近的可调参数取值。该方法弥补了采用默认参数和传统修正方法计算不准确的不足,充分考虑了不同地表特征的影响,能够更好地模拟复杂地形的分离流动。

进一步地,风速测量装置采用地面激光测风雷达,精度高,构建方便。

进一步地,根据以往的实验和模拟结果对比情况,误差最大的地方一般在流动分离区,因此将背风面的风速测量装置设在流动分离区,可精准获得流动分离区域垂直壁面方向的速度、湍流度分布,拟合得到实际地形条件下附加源项的计算公式,进而改善分离区域的计算精度。

进一步地,首先针对可调参数划定合理的取值范围,然后通过正交试验,能够减少计算量,提高计算效率。

进一步地,因为湍流模型常数因素较多,包含5个,水平也较多,按四个水平来计算,就会有4^5次方的全方案,而在众多计算中,有些因素的变动对计算影响较小,几乎不变,比如σ

附图说明

图1为本发明实施例的典型山丘模型示意图;

图2为实施例中建立的L

具体实施方式

下面以附图和具体实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。

由于复杂地形包含的种类繁多,不能一一枚举,本实施例仅以典型山丘地型为例,说明本发明方法的适用性,其它种类的复杂地形方法类似。

本发明的一种复杂地形下校正标准k-ε模型可调参数方法,具体方法如下:

第一步,确定要研究的复杂地形,在合适的位置布置两个激光雷达,获得实际地形下监测数据。

典型山丘地形轮廓线方程为:

式中,H表示山体高度,L为山底半径。本发明选取H=40m,L=100m,如图1所示。

为了模拟来流入口边界条件,首先需要确定当地主风向方向,在山丘迎风面的山脚位置处放置一个激光雷达,如图1中a点所示,可测得对应高度处的速度。利用如下公式确定入口速度廓线:

式中,u表示来流速度,Z表示对应高度,Z

为了校准标准k-ε模型,需要将计算结果与实测数据进行比对。根据以往的实验和模拟结果对比情况来看,误差最大的地方一般在流动分离区。因此,在山丘背风面的山脚位置处防止第二个激光雷达,如图1中b点所示,可测得山丘流动分离区域的速度分布。

第二步,对复杂地形建模并划分网格,利用CFD软件中的标准k-ε湍流模型进行计算。

利用solidworks建模并用前处理软件生成计算域网格,按照第一步中得到的速度分布设置好相应的边界条件,采用标准k-ε湍流模型进行计算。针对可调参数划定合理的取值范围,其中C

第三步,根据计算结果与试验数据之间的误差,进行拟合响应曲面实验设计,通过多组数据进行拟合,找到最优的可调参数取值。

将第一步中布置激光雷达的位置作为参考位置,将第二步中待处理的数据,提取从地面开始到100m高处的速度廓线,与同位置同高度处的实测数据求方差,作为修正可调参数的目标方差,方差越大表明理论计算与实际测量相差较大,方差越小表示理论计算与实际测量拟合较好。将待处理计算都按该方法处理,共得到n(n<80)个方差。利用Design-Expert软件将得到的n组数据利用Box-Behnken设计方法,可以得到单个因素对实验结果的影响以及最佳的参数设置。将得到的结果重新标准k-ε湍流模型计算,验证是否符合实测数据,如有出入可对结果进行微调。

本发明还提供一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本发明所述复杂地形下校正标准k-ε模型可调参数方法的步骤。

本发明复杂地形下校正标准k-ε模型可调参数方法可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本发明复杂地形下校正标准k-ε模型可调参数方法如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。

基于这样的理解,在示例性实施例中,还提供了一种计算机可读存储介质,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于该计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。其中,所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NANDFLASH)、固态硬盘(SSD))等。

在示例性实施例中,还提供计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述复杂地形下校正标准k-ε模型可调参数方法的步骤。处理器可能是中央处理单元(CentralProcessingUnit,CPU),还可以是其他通用处理器、数字信号处理器(DigitalSignalProcessor、DSP)、专用集成电路(ApplicationSpecificIntegratedCircuit,ASIC)、现成可编程门阵列(Field-ProgrammableGateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。

需要说明的是,以上所述仅为本发明实施方式的一部分,根据本发明所描述的系统所做的等效变化,均包括在本发明的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实例做类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号