首页> 中国专利> 一种间接蒸发冷却空调对数据中心冷却效果的计算方法

一种间接蒸发冷却空调对数据中心冷却效果的计算方法

摘要

本发明涉及空调制冷技术领域,且公开了一种间接蒸发冷却空调对数据中心冷却效果的计算方法,包括以下步骤:S1:建立安装间接蒸发冷却空调的数据中心的物理模型;S2:建立数值模型,获得给定的边界条件;S3:进行仿真数值计算,将计算结果与实验结果对比,若在误差范围内,则计算结束并获得数据中心的温度和风速进而确定空凋对其的冷却效果,若在误差范围以外,则分析原因,对物理模型、数值模型进行调整继续计算。本发明能够给快捷的计算出数据中心内的温度和风速,确定间接蒸发冷却空调的冷却效果,先用仿真的方法进行数值模拟,确定最优的安装方式,降低成本。

著录项

  • 公开/公告号CN113111606A

    专利类型发明专利

  • 公开/公告日2021-07-13

    原文格式PDF

  • 申请/专利权人 苏州黑盾环境股份有限公司;

    申请/专利号CN202110404748.8

  • 发明设计人 耿玺;张水兵;左玲玉;司海青;

    申请日2021-04-15

  • 分类号G06F30/28(20200101);G06F111/10(20200101);G06F113/08(20200101);G06F119/14(20200101);G06F119/08(20200101);

  • 代理机构32491 苏州卓博知识产权代理事务所(普通合伙);

  • 代理人徐苏敏

  • 地址 215138 江苏省苏州市相城区阳澄湖镇田多里路9号

  • 入库时间 2023-06-19 11:49:09

说明书

技术领域

本发明涉及空调制冷技术领域,具体为一种间接蒸发冷却空调对数据中心冷却效果的计算方法。

背景技术

随着计算机网络技术的飞速发展以及各行各业对互联网+的深入应用,当今社会已进入大数据、云计算时代,这给用户带来革命性体验的同时,大幅度提高了网络及通信行业对于数据及信息的运用和处理需求,数据中心的规模也在不断的扩大发展数据中心具有散热设备多、散热量大、设备运行时间长及设备对环境温度有较严格的要求等特点,传统数据中心温控方案的耗电量占数据中心整体耗电量的40%~50%,如何降低数据中心温控产品用电的开支,降低数据中心的PUE,打造节能环保的数据中心,成为各运营商迫切需要研究的重要课题。

数据中心制冷行业经过机房精密空调制冷、行间空调制冷、直接新风制冷、间接新风制冷、直接蒸发制冷等不同技术实践和积累,以创新的理念推出间接蒸发制冷,其把新风、直接蒸发、间接换热、以及少量的DX/CW辅助制冷融合在一起,以最节能的空调运行方式,成为适合在广域部署的数据中心最佳绿色制冷解决方案,基于此,为了确定间接蒸发冷却空调对数据中心的冷却效果,先用仿真的方法进行数值模拟,针对具体情况进行具体计算,将最终得出的结果相互比较,确定最优的安装方式,这样可以在建立数据中心前就能知道数据中心散热情况与能耗大小,进而选择针对性方案,达到降低成本的目的。

发明内容

(一)解决的技术问题

针对现有技术的不足,本发明提供了一种间接蒸发冷却空调对数据中心冷却效果的计算方法,其能方便快捷的计算出数据中心内的温度和风速,确定间接蒸发冷却空调的冷却效果。

(二)技术方案

为实现上述目的,本发明提供如下技术方案:

一种间接蒸发冷却空调对数据中心冷却效果的计算方法,包括以下步骤:

S1:建立安装间接蒸发冷却空调的数据中心的物理模型,物理模型包括如下部件:数据中心的墙壁、冷通道、热通道、机柜、服务器、多孔地板和空调,空调出风口排列在同一侧,机房的相邻两列机柜采用“面对面,背靠背”布置,中间形成封闭的冷通道,空调回风口在出风口上部同一侧布置,冷空气由出风口吹出,通过开孔地板进入封闭冷通道,然后穿过位于其一侧的机柜,形成热通道,然后回到回风口;

S2:建立数值模型,获得给定的边界条件;

S3:进行仿真数值计算,将计算结果与实验结果对比,若在误差范围内,则计算结束并获得数据中心的温度和风速进而确定空凋对其的冷却效果,若在误差范围以外,则分析原因,对物理模型、数值模型进行调整继续计算。

作为本发明再进一步的方案,所述S1中对于实际机柜中数量较多的服务器,保证总体的散热量不变对服务器的数量进行简化,从距离机柜底部100-300mm处开始,每隔100-300mm布置一个。

进一步的,所述S1中物理模型的尺寸为:数据中心长×宽×高:56.2m×10.2m×4.7m,机柜外壳长×宽×高:7.2m×1.2m×2m,服务器长×宽×高:7.1m×1.1m×0.4m,空调送风口长×宽:1.45m×0.95m,冷通道长×宽×高:7.2m×1.2m×2m,热通道长×宽×高:7.2m×1.2m×2m,背部风扇长×宽:7.2m×2m。

在前述方案的基础上,所述S2中给定的边界条件包括:间接蒸发冷却空调的送风口、回风口,数据中心内部的墙壁以及机柜壁面,服务器表面、多孔地板和机柜背部风扇压力阶跃值。

进一步的,所述S3中数值计算中在湍流方程选择时,采用RNG k-

在前述方案的基础上,所述S3中数值模型中,RNG

湍动能k方程为:

湍流耗散率ε方程:

式中,C

本发明再进一步的方案,所述数值模型中,必须遵循最基本的质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程为:

式中,u为速度矢量,ρ为密度,t为时间,u、v、w为速度矢量在X、Y、Z方向上的分量

其动量守恒方程为:

其能量守恒方程为:

数学模型中,对流热换计算采用公式如下:

Q

q

式中,Q

进一步的,所述S2中给定的边界条件的如下:送风口风速6.05m/s、温度为22℃,回风口压力15Pa,墙壁初始温度为20℃,机柜壁面为无滑移绝热壁面,服务器表面面热流密度为691(W/m

机柜背部的风扇模数值模型为:

其中,Δp是压力阶跃,f

针对架空地板采用多孔板送风的安装方式,在对孔板风口描述中,将孔板作为无厚度的面给定多孔阶跃边界条件,多孔阶跃模型指定了通过孔板时的压力阶跃损失,压力损失的大小通过达西定律和附加的惯性损失确定:

ΔP为压力变化值,μ为空气的动力黏度,α为多孔介质的渗透率,v为孔板附近的速度,C

在前述方案的基础上,所述当数据中心的数值模型满足以下要求时,可对其进行仿真:

(1)假设数据中心内空气流动为低速流动,流体不可压缩,忽略因流体粘性力做功引起的耗散热;

(2)假设室内空气流动状态为稳态湍流,空气流速较小;

(3)满足Boussinesq假设,认为流体密度的变化仅对质量力项产生影响,对其他项的影响忽略不计;

(4)数据中心墙体均为同质材料,导热系数稳定不变;

(5)空气的相对湿度对室内气流组织影响很小,可忽略。

(三)有益效果

与现有技术相比,本发明提供了一种间接蒸发冷却空调对数据中心冷却效果的计算方法,具备以下有益效果:

1、本发明通过物理模型的建立能够快速的进行仿真运用,降低成本。

2、本发明通过数值模型的建立能够方便后面快捷的计算出数据中心内的温度和风速,确定间接蒸发冷却空调的冷却效果。

3、本发明先用仿真的方法进行数值模拟,针对具体情况进行具体计算,将最终得出的结果相互比较,确定最优的安装方式,这样可以在建立数据中心前就能知道数据中心散热情况与能耗大小,进而选择针对性方案,达到降低成本的目的。

附图说明

图1为本发明提出的一种间接蒸发冷却空调对数据中心冷却效果的计算方法的流程结构示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

参照图1,一种间接蒸发冷却空调对数据中心冷却效果的计算方法,包括以下步骤:

S1:建立安装间接蒸发冷却空调的数据中心的物理模型,物理模型包括如下部件:数据中心的墙壁、冷通道、热通道、机柜、服务器、多孔地板和空调,空调出风口排列在同一侧,机房的相邻两列机柜采用“面对面,背靠背”布置,中间形成封闭的冷通道,空调回风口在出风口上部同一侧布置,冷空气由出风口吹出,通过开孔地板进入封闭冷通道,然后穿过位于其一侧的机柜,形成热通道,然后回到回风口,通过物理模型的建立能够快速的进行仿真运用,降低成本;

S2:建立数值模型,获得给定的边界条件,通过数值模型的建立能够方便后面快捷的计算出数据中心内的温度和风速,确定间接蒸发冷却空调的冷却效果;

S3:进行仿真数值计算,将计算结果与实验结果对比,若在误差范围内,则计算结束并获得数据中心的温度和风速进而确定空凋对其的冷却效果,若在误差范围以外,则分析原因,对物理模型、数值模型进行调整继续计算,先用仿真的方法进行数值模拟,针对具体情况进行具体计算,将最终得出的结果相互比较,确定最优的安装方式,这样可以在建立数据中心前就能知道数据中心散热情况与能耗大小,进而选择针对性方案,达到降低成本的目的。

本发明的S1中对于实际机柜中数量较多的服务器,保证总体的散热量不变对服务器的数量进行简化,从距离机柜底部200mm处开始,每隔200mm布置一个,S1中物理模型的尺寸为:数据中心长×宽×高:56.2m×10.2m×4.7m,机柜外壳长×宽×高:7.2m×1.2m×2m,服务器长×宽×高:7.1m×1.1m×0.4m,空调送风口长×宽:1.45m×0.95m,冷通道长×宽×高:7.2m×1.2m×2m,热通道长×宽×高:7.2m×1.2m×2m,背部风扇长×宽:7.2m×2m,S2中给定的边界条件包括:间接蒸发冷却空调的送风口、回风口,数据中心内部的墙壁以及机柜壁面,服务器表面、多孔地板和机柜背部风扇压力阶跃值。

需要特别说明的是,S3中数值计算中在湍流方程选择时,采用RNG k-ε模型计算湍流,计算温度时,采用求解能量方程计算,电子元器件的散热计算时,采用牛顿冷却定律计算对流热换,S3中数值模型中,RNGk-ε模型具体计算公式如下:

湍动能k方程为:

湍流耗散率ε方程:

式中,C

数值模型中,必须遵循最基本的质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程为:

式中,u为速度矢量,ρ为密度,t为时间,u、v、w为速度矢量在X、Y、Z方向上的分量

其动量守恒方程为:

其能量守恒方程为:

数学模型中,对流热换计算采用公式如下:

Q

q

式中,Q

S2中给定的边界条件的如下:送风口风速6.05m/s、温度为22℃,回风口压力15Pa,墙壁初始温度为20℃,机柜壁面为无滑移绝热壁面,服务器表面面热流密度为691(W/m

机柜背部的风扇模数值模型为:

其中,Δp是压力阶跃,f

针对架空地板采用多孔板送风的安装方式,在对孔板风口描述中,将孔板作为无厚度的面给定多孔阶跃边界条件,多孔阶跃模型指定了通过孔板时的压力阶跃损失,压力损失的大小通过达西定律和附加的惯性损失确定:

ΔP为压力变化值,μ为空气的动力黏度,α为多孔介质的渗透率,v为孔板附近的速度,C

当数据中心的数值模型满足以下要求时,可对其进行仿真:

(1)假设数据中心内空气流动为低速流动,流体不可压缩,忽略因流体粘性力做功引起的耗散热;

(2)假设室内空气流动状态为稳态湍流,空气流速较小;

(3)满足Boussinesq假设,认为流体密度的变化仅对质量力项产生影响,对其他项的影响忽略不计;

(4)数据中心墙体均为同质材料,导热系数稳定不变;

(5)空气的相对湿度对室内气流组织影响很小,可忽略。

对数据中心进行仿真计算,选取Z=1.7m截面对比分析实验结果与仿真计算结果,选取该截各个热通道在Y=5.1m处的中间位置作为测点,测量点风速和温度值实验结果与仿真计算结果见下表:

在该文中的描述中,需要说明的是,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号