首页> 中国专利> 一种高强韧性钒氮微合金化热轧钢管及其制造方法

一种高强韧性钒氮微合金化热轧钢管及其制造方法

摘要

一种高强韧性钒氮微合金化热轧钢管及其制造方法,属于钢铁生产领域。该高强韧性钒氮微合金化热轧钢管包括的化学元素及其质量分数为:C:0.15~0.45%,Si:0.1~0.6%,Mn:1.0~1.8%,P:0.001~0.02%,S:0.001~0.02%,Al:0.005~0.05%,V:0.05~0.25%,N:0.008~0.028%,Ti:0.005~0.05%,Mg:0.001~0.01%,O:0.001~0.01%,余量为Fe和不可避免的杂质;其制造方法为:对钢管成分和夹杂物进行优化设计,通过冶炼中在钒氮微合金化基础上,引入的特殊夹杂物细化组织,并结合轧管工艺的改进,能够在减少复杂热处理工艺和不添加大量贵重合金下进行生产,实现钢管轧态强韧性能的协同提升。

著录项

  • 公开/公告号CN113025915A

    专利类型发明专利

  • 公开/公告日2021-06-25

    原文格式PDF

  • 申请/专利权人 东北大学;

    申请/专利号CN202110238992.1

  • 申请日2021-03-04

  • 分类号C22C38/14(20060101);C22C38/12(20060101);C22C38/06(20060101);C22C38/04(20060101);C22C38/02(20060101);C22C33/04(20060101);C21C7/00(20060101);C21D8/10(20060101);

  • 代理机构21109 沈阳东大知识产权代理有限公司;

  • 代理人马海芳

  • 地址 110819 辽宁省沈阳市和平区文化路3号巷11号

  • 入库时间 2023-06-19 11:37:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-02-01

    授权

    发明专利权授予

说明书

技术领域

本发明属于钢铁生产技术领域,特别涉及一种高强韧性钒氮微合金化热轧钢管及其制造方法。

背景技术

钢管在能源、化工、机械等领域具有重要和广泛的应用。随着装备制造技术的发展以及服役工况条件的日趋严格,对钢管的强韧性能提出更高要求。同时,随着经济社会的发展,资源、能源、环境问题日益突出,对钢铁行业而言这一问题尤为显著。热轧钢管的加工成型工艺复杂,较难实现成型成性的在线一体化调控,钢管性能的提高往往需要合金元素的添加以及进行离线热处理,这显然增加了资源能源消耗。在低成本低消耗的同时保证良好的性能是钢管生产领域的重要发展方向。

专利CN108603266B公开一种高强度高韧性钢管用钢板及其制造方法,采用低碳含量设计并添加Nb、Ti及其它合金元素,并进行Ca、REM、Zr、Mg中一种元素处理,采用三阶段轧制工艺,在Ar

专利CN107699790A公开了一种耐候无缝钢管钢种及无缝钢管制造方法,采用以碳锰钢为基础,添加P、Cu、Cr、Ni、V等的钢种设计,针对不同耐候和钢级要求调整元素配比,可采用不同交货状态,钢级Q460NH-Q550NH交货状态为调质态,显然增加了成本和能耗。

专利CN107377620A公开了一种热轧无缝钢管及其制备方法,从冶炼、热轧方面改善基于45号钢生产热轧钢管的加工工艺,添加Al、Ti合金元素,细化热轧态无缝钢管的晶粒,在省略正火工序的同时保证强韧性,但是所采用的较低的终轧温度给生产带来困难。

专利CN103882298A公开了一种X60输送管线用无缝钢管及其制造方法,采用低C+高Mn+V、Ti微合金化的合金设计,采用转炉冶炼+炉外精炼+方坯连铸+圆坯轧制+无缝制管的工艺路线,所述钢管具有细小的F+P组织。该方案限制了较低的C、N含量,廉价元素的强化作用未得到充分发挥,并且采用低温定径工艺,为实际生产带来不便。

专利CN1532300A公开了一种非调质无缝钢管,目的是不严格规定制管加工度或制管温度,也能兼顾高强度和韧性,防止焊接部的裂纹或韧性的降低。通过降低碳含量,复合添加Mn、Cr、V提高强度,将碳当量调整到规定范围。但所得的组织以贝氏体为主,不利于低温韧性的提高。

专利CN101899612A公开了一种非调质钢管及其制备方法,采用钒微合金化,通过加大张力减径变形量和降低张力减径的温度,使钢管得到10级左右细小的晶粒尺寸,具有良好的强韧性能,不再使用Nb、Ti、B等合金元素。但所采用的大变形量、低温张力减径对生产设备和工艺带来不利影响。

通过对现有技术分析,热轧钢管性能的改善,一方面大量添加合金元素造成成本增加,另一方面需要特殊的轧制和热处理工艺辅助控制,带来设备、能耗和生产效率的问题。现有的热轧钢管生产技术手段不能同时实现高强度、高韧性、低成本、高效率制造的要求,对此仍需要进行深入研究。

发明内容

针对目前现有技术的不足,本发明提供一种高强韧性钒氮微合金化热轧钢管及其制造方法,该方法针对钢管成分和夹杂物进行优化设计,通过冶炼技术和轧制工艺的改进,在钒氮微合金化基础上,利用冶炼过程中引入的特殊夹杂物细化组织,提高热轧钢管的韧性。本发明主要改善目前工艺下热轧状态下钢管强韧性能不能良好匹配的问题,在减少复杂热处理工艺和不添加大量贵重合金的条件下进行高强韧性热轧钢管的生产,实现钢管轧态强韧性能的协同提升。

为了实现上述目的,本发明采取如下技术方案:

本发明的一种高强韧性钒氮微合金化热轧钢管,其包括的化学元素及各个元素的质量分数为:C:0.15~0.45%,Si:0.1~0.6%,Mn:1.0~1.8%,P:0.001~0.02%,S:0.001~0.02%,Al:0.005~0.05%,V:0.05~0.25%,N:0.008~0.028%,Ti:0.005~0.05%,Mg:0.001~0.01%,O:0.001~0.01%,余量为Fe和不可避免的杂质;

所述的高强韧性钒氮微合金化热轧钢管中,含有由MgAl

所述的高强韧性钒氮微合金化热轧钢管,还包括化学元素按质量分数为:Cr:0.1~1%,Mo:0.1~1%,Ni:0.1~1%,Cu:0.1~1%,Nb:0.01~0.2%,B:0.0005~0.005%中的一种或几种。

所述的高强韧性钒氮微合金化热轧钢管,其显微组织为铁素体珠光体组织,平均晶粒尺寸为5~30μm,并且平均每3个晶粒中至少包含1个含有MgAl

所述的高强韧性钒氮微合金化热轧钢管,其屈服强度为400~800MPa,0℃冲击韧性>47J。

本发明的一种高强韧性钒氮微合金化热轧钢管的制造方法,包括以下步骤:

步骤1、冶炼:

将铁水和/或废钢料熔炼成钢水,满足出钢条件后出钢,出钢过程加入脱氧剂脱氧,并控制铝质量分数<0.01%;

脱氧后的钢水进入LF精炼站,进行升温、造渣、底吹、脱氧脱硫、除夹杂的精炼处理,精炼时间30~60min;钢水脱硫至0.02%以下时,进行钒合金化和氮合金化,分别达到质量分数:V:0.05~0.25%、N:0.008~0.028%;钢水脱氧至0.01%以下时,喂入钛镁铝包芯线,钢包底吹1~10min,生成微米级或亚微米级尺寸的MgAl

步骤2、轧管:

将圆管坯加热至1200~1300℃,加热时间30~300min,得到加热后的管坯;

将加热后的管坯进行斜轧穿孔,得到穿孔毛管;

将穿孔毛管进入轧管机轧管,终轧温度950~1150℃,得到轧制后的荒管;

将轧制后的荒管进行定减径轧制,终轧温度900~1100℃,得到热轧钢管;

步骤3、冷却:

热轧钢管在冷床上自然冷却,或进入在线冷却装置进行加速冷却,加速冷却速度5~50℃/s,终冷温度600~750℃,然后在冷床空冷至室温,得到高强韧性钒氮微合金化热轧钢管。

所述的步骤1中,冶炼采用转炉或电炉中的一种。

所述的步骤1中,出钢条件为:当钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%。

所述步骤1中,钢水还进行RH或VD精炼,在采用RH或VD精炼时,钛镁铝包芯线的喂入位置为LF工位和RH/VD工位中的一处或两处。

所述步骤1中,钢水进行钒合金化和氮合金化的方法包括:钒合金化采用加入钒铁或钒氮合金,氮合金化采用添加增氮合金或底吹氮气中的一种方式或两种方式的结合,增氮合金为氮化硅、氮化锰、氮化硅锰、氮化铬、钒氮合金中的一种或几种。

所述步骤1中,钛镁铝包芯线由含有钛、镁、铝元素的粒径小于3mm的合金粉末混匀填充制成,合金粉末的化学成分按质量分数包括:Ti:15~50%,Mg:10~40%,Al:5~50%,Si:0.1~50%,O:0.1~10%,余量为铁和杂质元素;钛镁铝包芯线的外径为8~16mm,喂线速度为50~250m/min。

所述的步骤2中,圆管坯加热采用在线热送热装,或者冷却后装入加热炉中加热。

所述步骤2中,轧制后的荒管在进行定减径轧制之前进行喷水冷却或在空气中冷却。

所述步骤3中,热轧钢管的在线加速冷却方式采用外表面喷水冷却,或内表面和外表面同时喷水冷却;冷却过程热轧钢管保持旋转运动。

本发明的设计思想是:

本发明通过对钢管化学组成、冶炼方式和加工工艺的特殊设计,在采用钒氮微合金化成分基础上,引入特殊夹杂物粒子,钉扎晶粒细化组织,解决目前采用控轧控冷工艺或离线热处理工艺生产难度大、效率低等问题,充分利用钢中细小弥散氧化物夹杂物来细化组织和提升强韧性能,简化生产工艺,降低制造成本,提高产品质量。

本发明采用中低含量的C-Mn-Si成分体系,充分利用廉价元素的强化作用;P、S作为杂质元素,其上限以不显著损害钢管性能为原则,V、N作为强化的主要元素需要同时满足V:0.05~0.25%、N:0.008~0.028%。此外,Mg、Al、Ti、N、O在本发明中作为相互制约的元素而需协调设计,在满足含量要求的同时形成特定的夹杂物类型分布,以达到细化组织的目的。钢中含有的MgAl

对于高强韧性热轧钢管而言,目前生产过程中控轧控冷或离线热处理工艺复杂,生产效率低。本发明通过在现有冶炼技术中进行改进,通过改变喂线方式和关键参数控制,在精炼过程中进行特定成分的钛镁铝包芯线处理,配合后续空冷或简单水冷工艺,形成有利的夹杂物分布,实现钢中细小弥散的特定夹杂物有效钉扎奥氏体晶粒,诱导晶内铁素体形成。在不使用复杂热处理工艺和添加大量合金条件下,充分发挥特殊夹杂物对组织的细化作用,最终实现热轧态钢管性能的显著提高。

本发明的优点及有益效果:

1、本发明通过新型成分体系设计,在钢中引入特殊类型夹杂物分布,所形成的复合夹杂物在钢管热轧过程中可有效抑制奥氏体晶粒的粗化,细化原始奥氏体晶粒,在后续冷却过程中诱导晶内铁素体大量形成,所采用的细晶强化方式,可同时提高钢管强度和韧性。

2、本发明采用高温轧管定径工艺和空冷或简单冷却手段,相比于目前生产中低温轧制以及离线热处理手段,降低了工艺难度,节省了工序步骤,改善了生产条件,提高生产效率。

3、本发明克服现有技术手段的不足,不需设备改造,工艺简单易行,降低生产成本,性能提高效果显著,对热轧钢管生产具有特殊意义,有利于技术的推广应用。

附图说明

图1为本发明实施例1中高强韧钒氮微合金化热轧钢管的光学显微组织图。

图2为本发明实施例1中高强韧钒氮微合金化热轧钢管中的典型夹杂物能谱。

具体实施方式

下面通过实施例详细介绍本发明方案的具体实施方式,但本发明的保护范围不局限于实施例。

实施例1

一种高强韧性钒氮微合金化热轧钢管的制造方法,包括以下工艺步骤:

步骤1、冶炼:

采用转炉将铁水熔炼成钢水,当钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%时满足出钢条件,出钢并加入硅脱氧剂脱氧,控制铝质量分数0.003%;

脱氧后的钢水进行LF精炼,进行升温、造渣、底吹、脱氧脱硫、除夹杂的精炼处理,精炼时间30~60min;钢水脱硫至0.02%以下时,钢水脱硫后加入钒铁和氮化硅锰进行钒、氮合金化,分别达到质量分数:V:0.05~0.25%、N:0.008~0.028%;

LF精炼过程中,钢水脱氧至0.004%,喂入钛镁铝包芯线,钛镁铝包芯线由粒径小于3mm的合金粉末混匀填充制成,合金粉末的化学成分按质量分数包括:Ti:20%,Mg:15%,Al:12%,Si:50%,O:0.2%,余量为铁和杂质元素;钛镁铝包芯线的外径为9mm,喂线速度为150m/min;钢包底吹氩气5min,生成微米级或亚微米级尺寸的MgAl

步骤2、轧管:

将圆管坯在线热送热装加热至1280℃,加热时间90min,将加热后的管坯进行斜轧穿孔,得到穿孔毛管;将穿孔毛管进入轧管机轧管,终轧温度1120℃,得到轧制后的荒管;将轧制后的荒管进行定减径轧制,终轧温度1080℃,得到热轧钢管;

步骤3、冷却:

热轧钢管在冷床上自然冷却,得到高强韧性钒氮微合金化热轧钢管。

制备的高强韧性钒氮微合金化热轧钢管包括的化学成分质量分数为:C:0.36%,Si:0.2%,Mn:1.2%,P:0.012%,S:0.005%,Al:0.012%,V:0.15%,N:0.009%,Ti:0.024%,Mg:0.003%,O:0.002%,余量为Fe和不可避免的杂质;

制备的高强韧性钒氮微合金化热轧钢管,钢中含有由MgAl

所制备钢管的显微组织图见图1,通过图1可知,其显微组织为铁素体珠光体组织,平均晶粒尺寸为22μm,晶粒尺寸得到显著细化,提高了强韧性能,并且平均每3个晶粒中至少包含1个含有MgAl

实施例2

一种高强韧性钒氮微合金化热轧钢管的制造方法,包括以下步骤:

步骤1、冶炼:

采用电炉将废钢料熔炼成钢水,当满足钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%的出钢条件后出钢并加入锰作为脱氧剂脱氧,控制铝质量分数0.008%;

脱氧后的钢水进行LF精炼和RH精炼,进行升温、造渣、底吹、脱氧脱硫、除夹杂的精炼处理,精炼时间30~60min;钢水脱硫后加入钒氮合金并底吹氮气进行钒、氮合金化;分别达到质量分数:V:0.05~0.25%、N:0.008~0.028%;

RH精炼后,钢水脱氧至0.002%,通过RH工位处喂入钛镁铝包芯线,钛镁铝包芯线由粒径小于3mm的合金粉末混匀填充制成,合金粉末的化学成分按质量分数包括:Ti:35%,Mg:10%,Al:45%,Si:4%,O:3%,余量为铁和杂质元素;钛镁铝包芯线的外径为15mm,喂线速度为250m/min;钢包底吹1min,生成微米级或亚微米级尺寸的MgAl

步骤2、轧管:

将圆管坯加热至1200℃,加热时间200min,将加热后的管坯进行斜轧穿孔,得到穿孔毛管;将穿孔毛管进入轧管机轧管,终轧温度960℃,得到轧制后的荒管;将轧制后的荒管进行定减径轧制,终轧温度930℃,得到热轧钢管;

步骤3、冷却:

将热轧钢管进行加速冷却,加速冷却速度30℃/s,终冷温度680℃,然后在冷床空冷至室温,得到高强韧性钒氮微合金化热轧钢管。

制备的高强韧性钒氮微合金化热轧钢管包括的化学成分质量分数为:C:0.25%,Si:0.4%,Mn:1.8%,P:0.01%,S:0.015%,Al:0.04%,V:0.12%,N:0.014%,Ti:0.048%,Mg:0.001%,O:0.001%,Cr:0.3%,余量为Fe和不可避免的杂质;

制备的高强韧性钒氮微合金化热轧钢管,钢中含有由MgAl

所制备钢管的显微组织为铁素体珠光体组织,平均晶粒尺寸为8μm,并且平均每3个晶粒中至少包含1个含有MgAl

实施例3

采用转炉将铁水和废钢料(按质量比,铁水:废钢料=4:1)熔炼成钢水,满足钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%的出钢条件后,出钢,并加入铝作为脱氧剂脱氧,控制铝质量分数0.001%;钢水进行LF精炼和VD精炼,进行升温、造渣、底吹、脱氧脱硫、除夹杂的精炼处理,精炼时间30~60min,钢水脱硫后加入钒氮合金进行钒、氮合金化;分别达到质量分数:V:0.05~0.25%、N:0.008~0.028%;

VD精炼过程中,钢水脱氧至0.005%,通过VD工位处喂入钛镁铝包芯线,钛镁铝包芯线由粒径小于3mm的合金粉末混匀填充制成,合金粉末的化学成分按质量分数包括:Ti:48%,Mg:27%,Al:5%,Si:8%,O:0.1%,余量为铁和杂质元素;钛镁铝包芯线的外径为11mm,喂线速度为180m/min;钢包底吹3min,生成微米级或亚微米级尺寸的MgAl

步骤2、轧管:

将圆管坯冷却后装入加热炉中加热至1250℃,加热时间30min,将加热后的管坯进行斜轧穿孔,得到穿孔毛管;将穿孔毛管进入轧管机轧管,终轧温度1070℃,得到轧制后的荒管;将轧制后的荒管进行定减径轧制,终轧温度980℃,得到热轧钢管;

步骤3、冷却:

热轧钢管在冷床上自然冷却,得到高强韧性钒氮微合金化热轧钢管。

制备的高强韧性钒氮微合金化热轧钢管包括的化学成分质量分数为:C:0.35%,Si:0.3%,Mn:1.6%,P:0.005%,S:0.004%,Al:0.005,V:0.07%,N:0.02%,Ti:0.03%,Mg:0.006%,O:0.01%,余量为Fe和不可避免的杂质;

制备的高强韧性钒氮微合金化热轧钢管,钢中含有由MgAl

所制备钢管的显微组织为铁素体珠光体组织,平均晶粒尺寸为15μm,并且平均每3个晶粒中至少包含1个含有MgAl

实施例4

一种高强韧性钒氮微合金化热轧钢管的制造方法,包括以下步骤:

步骤1、冶炼:

采用电炉将铁水和废钢料(按质量比,铁水:废钢料=1:2)熔炼成钢水,满足钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%的出钢条件后,出钢,并加入硅铝合金作为脱氧剂脱氧,控制铝质量分数0.006%;

脱氧后的钢水进行LF精炼,进行升温、造渣、底吹、脱氧脱硫、除夹杂的精炼处理,精炼时间30~60min;钢水脱硫至0.02%以下时,钢水脱硫后加入钒铁和氮化锰进行钒、氮合金化,分别达到质量分数:V:0.05~0.25%、N:0.008~0.028%;

LF精炼后,钢水脱氧至0.004%,喂入钛镁铝包芯线,钛镁铝包芯线由粒径小于3mm的合金粉末混匀填充制成,合金粉末的化学成分按质量分数包括:Ti:15%,Mg:25%,Al:24%,Si:0.1%,O:5%,余量为铁和杂质元素;钛镁铝包芯线的外径为8mm,喂线速度为70m/min;钢包底吹10min,生成微米级或亚微米级尺寸的MgAl

步骤2、轧管:

将圆管坯在线热送热装加热至1300℃,加热时间150min,将加热后的管坯进行斜轧穿孔,得到穿孔毛管;将穿孔毛管进入轧管机轧管,终轧温度1150℃,得到轧制后的荒管;将轧制后的荒管进行定减径轧制,终轧温度1100℃,得到热轧钢管;

步骤3、冷却:

热轧钢管进入在线冷却装置进行外表面喷水加速冷却,加速冷却速度25℃/s,终冷温度600℃,然后在冷床空冷至室温,冷却过程热轧钢管保持旋转运动,得到高强韧性钒氮微合金化热轧钢管。

制备的高强韧性钒氮微合金化热轧钢管包括的化学成分质量分数为:C:0.15%,Si:0.6%,Mn:1.0%,P:0.008%,S:0.02%,Al:0.008%,V:0.25%,N:0.01%,Ti:0.005%,Mg:0.001%,O:0.006%,Mo:0.1%,Ni:0.2%,Cu:0.2%,余量为Fe和不可避免的杂质;

制备的高强韧性钒氮微合金化热轧钢管,钢中含有由MgAl

所制备钢管的显微组织为铁素体珠光体组织,平均晶粒尺寸为26μm,并且平均每3个晶粒中至少包含1个含有MgAl

实施例5

一种高强韧性钒氮微合金化热轧钢管的制造方法,包括以下步骤:

步骤1、冶炼:

采用转炉将铁水熔炼成钢水,满足钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%的出钢条件后,出钢,并加入硅铝合金作为脱氧剂脱氧,控制铝质量分数0.005%;

脱氧后的钢水进行LF精炼和VD精炼,进行升温、造渣、底吹、脱氧脱硫、除夹杂的精炼处理,精炼时间30~60min;钢水脱硫至0.02%以下时,加入钒氮合金进行钒、氮合金化,分别达到质量分数:V:0.05~0.25%、N:0.008~0.028%;

LF精炼过程中,钢水脱氧至0.008%,在LF工位和VD工位两处喂入钛镁铝包芯线,钛镁铝包芯线由粒径小于3mm的合金粉末混匀填充制成,合金粉末的化学成分按质量分数包括:Ti:30%,Mg:12%,Al:24%,Si:30%,O:0.7%,余量为铁和杂质元素;钛镁铝包芯线的外径为16mm,喂线速度为120m/min;钢包底吹6min,生成微米级或亚微米级尺寸的MgAl

步骤2、轧管:

将圆管坯在线热送热装加热至1270℃,加热时间300min,将加热后的管坯进行斜轧穿孔,得到穿孔毛管;将穿孔毛管进入轧管机轧管,终轧温度950℃,得到轧制后的荒管;将轧制后的荒管进行定减径轧制,终轧温度900℃,得到热轧钢管;

步骤3、冷却:

热轧钢管进行内表面和外表面同时喷水加速冷却,加速冷却速度16℃/s,终冷温度720℃,然后在冷床空冷至室温,冷却过程热轧钢管保持旋转运动,得到高强韧性钒氮微合金化热轧钢管。

制备的高强韧性钒氮微合金化热轧钢管包括的化学成分质量分数为:C:0.32%,Si:0.1%,Mn:1.3%,P:0.009%,S:0.003%,Al:0.01%,V:0.22%,N:0.017%,Ti:0.01%,Mg:0.004%,O:0.004%,Nb:0.04%,B:0.002%,余量为Fe和不可避免的杂质;

制备的高强韧性钒氮微合金化热轧钢管,钢中含有由MgAl

所制备钢管的显微组织为铁素体珠光体组织,平均晶粒尺寸为18μm,并且平均每3个晶粒中至少包含1个含有MgAl

对比例1

一种钒氮微合金化钢管的制造方法,采用以下步骤:

步骤1、冶炼:

采用转炉将铁水熔炼成钢水,满足钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%的出钢条件后,出钢,并加入脱氧剂脱氧;

脱氧后的钢水进行LF精炼,并加入钒氮合金进行钒、氮合金化;按钢管成分要求调整钢水元素含量;钢水通过圆坯连铸机连铸得到圆管坯;

步骤2、轧管:

将圆管坯在线热送热装加热至1250℃,加热时间120min,将加热后的管坯进行斜轧穿孔,得到穿孔毛管;将穿孔毛管进入轧管机轧管,终轧温度1000℃,得到轧制后的荒管;将轧制后的荒管进行定减径轧制,终轧温度930℃,得到热轧钢管;

步骤3、冷却:

热轧钢管在冷床上自然冷却至室温,得到钒氮微合金化钢管。

制备的钒氮微合金化钢管包括的化学成分质量分数为:C:0.3%,Si:0.2%,Mn:1.4%,P:0.01%,S:0.01%,Al:0.02%,V:0.23%,N:0.016%,余量为Fe和不可避免的杂质;

制备的钒氮微合金化钢管,屈服强度为600MPa,0℃冲击韧性35J。

本实施例未进行成分和夹杂物的优化控制,热轧态性能不佳。

对比例2

一种钒氮微合金化钢管的制造方法,包括以下步骤:

步骤1、冶炼:

采用电炉将废钢熔炼成钢水,满足钢水温度达到1600~1700℃并且钢水中碳质量分数为0.03~0.25%、磷质量分数为0.001~0.02%、硫质量分数为0.005~0.03%的出钢条件后,出钢,并加入脱氧剂脱氧;

脱氧后的钢水进行LF精炼和VD精炼,加入钒氮合金进行钒、氮合金化;按钢管成分要求调整钢水元素含量;钢水通过圆坯连铸机连铸得到圆管坯;

步骤2、轧管:

将圆管坯加热至1270℃,加热时间150min,将加热后的管坯进行斜轧穿孔,得到穿孔毛管;将穿孔毛管进入轧管机轧管,终轧温度1100℃,得到轧制后的荒管;将轧制后的荒管进行定减径轧制,终轧温度950℃,得到热轧钢管;

步骤3、冷却:

热轧钢管在冷床上自然冷却至室温;自然冷却后的钢管进行离线正火热处理,正火温度900℃,加热时间60min,出炉冷却后得到钒氮微合金化钢管。

制备的钒氮微合金化钢管包括的化学成分质量分数为:C:0.28%,Si:0.3%,Mn:1.5%,P:0.011%,S:0.006%,Al:0.03%,V:0.18%,N:0.012%,余量为Fe和不可避免的杂质;

制备的钒氮微合金化钢管,屈服强度为520MPa,0℃冲击韧性67J。

本实施例未进行成分和夹杂物的优化控制,只能通过离线正火热处理提高钢管性能。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号