首页> 中国专利> 一种基于遗传算法的鸡舍温度传感器布置优化方法

一种基于遗传算法的鸡舍温度传感器布置优化方法

摘要

本发明公开了一种基于遗传算法的鸡舍温度传感器布置优化方法,包括以下步骤:S1,将鸡舍分为几个等距截面,在每个截面鸡笼区域均匀布置多个温度传感器,并设置为每隔一小时采集一次数据,采集月份为7月、1月和4月,获取原始数据;S2,对采集的原始数据进行预处理;S3,利用已测点的温度对每行、每列、每层鸡笼的未测点温度进行插值,生成一个含有已测点和预测点的温度数据集T;S4,对于温度数据集T,使用基于误差的方法,建立与温度相关的目标函数;S5,使用遗传算法从鸡舍的所有点位中找出一组适应度值最小的点位组合求解目标函数,得到最佳温度传感器的数量和位置的最优解。本发明具有监测过程简单易实现、监测结果准确的特点。

著录项

  • 公开/公告号CN112989529A

    专利类型发明专利

  • 公开/公告日2021-06-18

    原文格式PDF

  • 申请/专利权人 河北农业大学;

    申请/专利号CN202110163035.7

  • 申请日2021-02-05

  • 分类号G06F30/18(20200101);G06F30/27(20200101);G06N3/12(20060101);G01K13/02(20210101);G06F111/10(20200101);G06F119/08(20200101);

  • 代理机构11350 北京科亿知识产权代理事务所(普通合伙);

  • 代理人李兴林

  • 地址 071000 河北省保定市灵雨寺街289号

  • 入库时间 2023-06-19 11:29:13

说明书

技术领域

本发明涉及传感器优化布置技术领域,特别是涉及一种基于遗传算法的鸡舍温度传感器布置优化方法。

背景技术

环境对家禽的生产性能有很大的影响,尤其是在夏季和冬季的极端天气下,如果禽舍内环境控制不及时,家禽极易产生应激反应和其他疾病。蛋鸡舍环境控制在蛋鸡生产过程中起着非常重要的作用,温湿度是影响蛋鸡健康和生产性能的主要环境因素。因此,实时准确的监测鸡舍内温度,构建鸡舍环境控制系统,以及时对鸡舍内温度做出调整,有助于提高蛋鸡的生产能力,降低发病率和死亡率。

由于鸡舍内温度分布并不均匀,尤其是大型多层笼养鸡舍的长度较长和鸡笼层数较多,若布置的温度传感器太少,点位布置得不合适,监测到的温度数据不足以代表鸡舍整体环境的温度,若布置的温度传感器过多,则会增加控制系统成本,使整个系统的复杂性增加;现有的基于误差评估所有温度传感器位置的组合,以确定哪些组合最能反映温室的整体环境的方法存在着诸多不足,如只能在已布置的温度传感器中选择,对温度传感器初始位置的选取要求很高,若初始位置选取不好,则对结果影响较大;其次,在实现基于误差方法的过程中,使用枚举法将所有温度传感器组合的情况的结果都要一一列举,运算量比较大,解题效率不高,当传感器数量较多,时间序列较长时,会增加程序的运算时间,可能会造成时间崩溃。因此,基于现有技术存在的以上问题,亟需提供一种新的鸡舍温度传感器布置优化方法。

发明内容

本发明的目的是为了提供一种基于遗传算法的鸡舍温度传感器布置优化方法,使用空间插值的方法,增加温度数据,建立与温度相关的目标函数,通过遗传算法求解目标函数,得到最优解,具有监测过程简单易实现、监测结果准确的特点。

为实现上述目的,本发明提供了如下方案:

一种基于遗传算法的鸡舍温度传感器布置优化方法,包括以下步骤:

S1,将鸡舍分为几个等距截面,在每个截面鸡笼区域的每行、每列、每层均匀布置多个温度传感器,并将温度传感器设置为每隔一小时采集一次数据,采集月份为7月份、1月份和4月份,获取原始数据,以达到对鸡舍温度在空间上的全面监测;

S2,对温度传感器采集的原始数据中的缺失值及异常值进行分析和处理;

S3,利用已测点的温度对每行、每列、每层鸡笼的未测点温度进行插值,生成一个含有已测点和预测点的温度数据集T;

S4,对于所述温度数据集T,使用基于误差的方法,建立与温度相关的目标函数;

S5,使用遗传算法从鸡舍的所有已测点和预测点的坐标点点位中找出一组能够使适应度值最小的点位组合,求解目标函数,得到最佳温度传感器的数量和位置的最优解。

可选的,所述步骤S3中利用已测点的温度对每行、每列、每层鸡笼的未测点温度进行插值,生成一个含有已测点和预测点的温度数据集T,具体包括:

S301,构建初始布置的温度传感器获取的鸡舍空气温度数据集Z(x

S302,将鸡舍内的区域按每行、每列、每层进行栅格化处理,并将栅格交点作为未知数据点;

S303,计算两两监测点之间的距离h和半方差γ;

S304,对距离h和半方差γ数据进行曲线拟合,获取拟合曲线函数γ=f(h);

S305,根据拟合曲线重新计算所有已知监测点之间的半方差γ;

S306,任选一个未知数据点,利用所述拟合曲线函数计算其与已知监测点之间的距离h和半方差γ=f(d);

S307,根据方程计算得到最优系数λ

式中,μ为已测点温度的均值;

S308,计算未知数据点到各个已知监测点的权重系数λ

S309,使用最优系数对已知监测点的属性值进行加权求和,得到未知数据点x

可选的,所述步骤S4中对于所述温度数据集T,使用基于误差的方法,建立与温度相关的目标函数,具体包括:

S401,将区域内所有点位的空气温度数据的平均值定义为整体平均温度T

S402,对所有点位进行任意组合,共计有2

S403,将整体平均温度和组合平均温度之差的绝对值定义为每个组合的温差趋势T

S404,通过每个组合的温差趋势在时间序列上的平均值和标准偏差之和来评价每个温度传感器组合和所有温度传感器在平均值上的接近程度,n个点位在m个小时的温度数据用以下矩阵表示,其中T

从n个温度传感器中选择p个温度传感器为一组,被选择的温度传感器编号用k表示,其中p为介于1到n之间的任意整数,选择的p个温度传感器编号的集合为S,即k∈S,目标函数表达式为:

其中温差趋势T

式(2)、(3)中i表示鸡舍内某一点位的编号,n为鸡舍内的总点位数,j表示采集的某一时刻,m表示采集的总时间,k表示被选择的点位编号,p表示被选择的点位总个数,p为介于1到n之间的任意整数,S表示被选择的p个点位编号的集合,即k∈S,T

可选的,所述步骤S5中使用遗传算法从鸡舍的所有已测点和预测点的坐标点点位中找出一组能够使适应度值最小的点位组合求解目标函数,得到最佳温度传感器的数量和位置的最优解,具体包括:

S501,优化问题的生成,使用温度传感器在鸡舍内进行初始布置后,利用空间插值对温度数据进行丰富,得到时间序列上的鸡舍的每行、每列、每层的点位对应的温度数据集T;

S502,参数初始化,对染色体进行第一代编码,采用整数编码的方式,对所有点位从1到n进行编码,ID为点位编号,Code ID为点位对应的编码,染色体的长度等于所有的点位数量n,每个点位编号的组合构成一条染色体,所有的染色体构成一个含各种组合的群体,如下所示:

ID x

CodeID 1 2 3…n

其中当点位

S503,根据所述目标函数表达式计算群体中的每个染色体的适应度值;

S504,对适应度值进行排序,按比例选择保留最优解;

S505,运用轮盘赌的选择方法,选择染色体的下一代群体,即选择染色体的概率和染色体的适应度值成反比,适应度值较低的染色体有更大的可能被选择,并可能在下一代中重复出现,而适应度值较高的染色体则很可能不被选择;

S506,对产生的下一代群体执行交叉和变异算子,其中,交叉的方法为单基因交叉,即随机选择需要交叉的基因位,然后父代上对应的基因交叉,如下所示:

变异的方法为单点变异,即随机选择需要变异的基因位,生成一个该基因位取值区间范围内的随机数,用随机数替代原来的值;若变异算子选择某染色体的第5、7位的基因进行变异,则产生新的染色体如下:

S507,判断是否满足终止条件,如果是,则结束,如果否,则回到步骤S503。

可选的,所述步骤S507中的所述终止条件具体为:在计算所有点位组合下对应的适应度值的过程中,点位组合的适应度值越小,越接近鸡舍的平均温度,随着点位数量的增加,适应度函数值降低,从某一点位数i开始,适应度值的递减梯度开始变小,最佳温度传感器的数量确定为i,在最佳温度传感器数量确定下来的同时,i个点位组合对应最佳位置也能同时确定,即为所有i个组合下适应度值最低的点位组合,在这些点位布置温度传感器,以达到对鸡舍内空气温度的整体监测。

根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供的基于遗传算法的鸡舍温度传感器布置优化方法,通过使用空间插值的方法,增加鸡舍内部空间的温度数据,能够减少对温度传感器初始位置选取的依赖;将温度数据按时间序列进行处理,更加适用于鸡舍这种变化明显、不规律的环境,使得结果更为准确;根据丰富后的温度数据集,借助遗传算法进行优化,得到的结果即为最优温度传感器组合的编号,简单易实现。本发明提供的基于遗传算法的鸡舍温度传感器布置优化方法,具有监测过程简单易实现、监测结果准确的特点。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明基于遗传算法的鸡舍温度传感器布置优化方法的流程图;

图2为本发明基于遗传算法的鸡舍温度传感器布置优化方法中的遗传算法求最优解流程图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是为了提供一种基于遗传算法的鸡舍温度传感器布置优化方法,使用空间插值的方法,增加温度数据,建立与温度相关的目标函数,通过遗传算法求解目标函数,得到最优解,具有监测过程简单易实现、监测结果准确的特点。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

本发明提供的基于遗传算法的鸡舍温度传感器布置优化方法,将空间插值和遗传算法用于求解鸡舍内温度传感器布置优化问题,使用空间插值的方法增加温度数据集,将鸡舍内布置的温度传感器采集的温度数据经过分析、处理和清洗后,使用在地理统计学中广泛使用的Kriging空间插值算法重构空气温度在鸡舍空间分布的数据;使用基于误差的方法,通过评价每个温度传感器组合在时间序列上的平均温度和所有温度传感器在时间序列上的平均温度的误差,能找出在时间序列上最接近鸡舍平均温度的传感器组合;使用遗传算法作为优化工具对问题进行求解的时候,使用整数编码的遗传算法对问题进行求解,在算法中,将遗传算法的染色体编码作为所有预选点位的编号,然后通过进化机制进行优化;在对这些温度传感器进行最优选择的时候,如果某个温度传感器被选择了,那么在个体编码中的相应点位被设置为对应温度传感器编号,否则设置为0;通过这种编码方式,个体编码和现实的温度传感器组合直观地对应了起来,不但理解容易,而且算法实现简单,方便使用;本发明提供的基于遗传算法的鸡舍温度传感器布置优化方法,如图1所示,具体步骤包括:

S1,为了准确监测蛋鸡舍内部环境,将鸡舍分为几个等距截面,在每个截面鸡笼区域的每行、每列、每层均匀布置多个温度传感器,并将所述温度传感器设置为每隔一小时采集一次数据,采集月份为7月份、1月份和4月份,获取原始数据,以达到对鸡舍温度在空间上的全面监测;

S2,对温度传感器采集的原始数据中的缺失值及异常值进行分析和处理;

S3,利用已测点的温度对每行、每列、每层鸡笼的未测点温度进行插值,生成一个含有已测点和预测点的温度数据集T:

S301,构建初始布置的温度传感器获取的鸡舍空气温度数据集Z(x

S302,将鸡舍内的区域按每行、每列、每层进行栅格化处理,并将栅格交点作为未知数据点;

S303,计算两两监测点之间的距离h和半方差γ;

S304,对距离h和半方差γ数据进行曲线拟合,获取拟合曲线函数γ=f(h);

S305,根据拟合曲线重新计算所有已知监测点之间的半方差γ;

S306,任选一个未知数据点,利用所述拟合曲线函数计算其与已知监测点之间的距离h和半方差γ=f(d);

S307,根据方程计算得到最优系数λ

式中,μ为已测点温度的均值;

S308,计算未知数据点到各个已知监测点的权重系数λ

S309,使用最优系数对已知监测点的属性值进行加权求和,得到未知数据点x

S4,由于生成的温度数据集中既有温度传感器采集的实测数据,也有通过插值方法获取的预测数据,以下将这两种数据的坐标点统称为点位,假设稳定区域内所有点位的数据平均值代表此区域整体环境;对于所述温度数据集T,使用基于误差的方法,建立与温度相关的目标函数:

S401,将区域内所有点位的空气温度数据的平均值定义为整体平均温度T

S402,对所有点位进行任意组合,共计有2

S403,将整体平均温度和组合平均温度之差的绝对值定义为每个组合的温差趋势T

S404,通过每个组合的温差趋势在时间序列上的平均值和标准偏差之和来评价每个温度传感器组合和所有温度传感器在平均值上的接近程度,n个点位在m个小时的温度数据可以用以下矩阵表示,其中T

从n个温度传感器中选择p个温度传感器为一组,被选择的温度传感器编号用k表示,其中p为介于1到n之间的任意整数,选择的p个温度传感器编号的集合为S,即k∈S,目标函数表达式为:

其中温差趋势T

S5,如图2所示,使用遗传算法从鸡舍的所有已测点和预测点的坐标点点位中找出一组能够使适应度值最小的点位组合求解目标函数,得到最佳温度传感器的数量和位置的最优解:

S501,优化问题的生成,使用温度传感器在鸡舍内进行初始布置后,利用空间插值对温度数据进行丰富,得到时间序列上的鸡舍的每行、每列、每层的点位对应的温度数据集T;

S502,参数初始化,对染色体进行第一代编码,采用整数编码的方式,对所有点位从1到n进行编码,ID为点位编号,Code ID为点位对应的编码,染色体的长度等于所有的点位数量n,每个点位编号的组合构成一条染色体,所有的染色体构成一个含各种组合的群体,如下所示:

ID x

CodeID 1 2 3…n

其中当点位

S503,计算群体中的每个染色体的适应度值,适应度函数为:

其中温差趋势T

式(2)、(3)中i表示鸡舍内某一点位的编号,n为鸡舍内的总点位数,j表示采集的某一时刻,m表示采集的总时间,k表示被选择的点位编号,p表示被选择的点位总个数,p为介于1到n之间的任意整数,S表示被选择的p个点位编号的集合,即k∈S,T

S504,对适应度值进行排序,按比例选择保留最优解;

S505,运用轮盘赌的选择方法,选择染色体的下一代群体,即选择染色体的概率和染色体的适应度值成反比,适应度值较低的染色体有更大的可能被选择,并可能在下一代中重复出现,而适应度值较高的染色体则很可能不被选择;

S506,对产生的下一代群体执行交叉和变异算子;其中,交叉的方法为单基因交叉,即随机选择需要交叉的基因位,然后父代上对应的基因交叉,如下所示:

变异的方法为单点变异,即随机选择需要变异的基因位,生成一个该基因位取值区间范围内的随机数,用随机数替代原来的值;若变异算子选择某染色体的第5、7位的基因进行变异,则产生新的染色体如下:

S507,判断是否满足终止条件,如果是,则结束,如果否,则回到步骤S503,所述终止条件具体为:在计算所有点位组合下对应的适应度值的过程中,点位组合的适应度值越小,越接近鸡舍的平均温度,随着点位数量的增加,适应度函数值降低,从某一点位数i开始,适应度值的递减梯度开始变小,最佳温度传感器的数量可以确定为i,在最佳温度传感器数量确定下来的同时,i个点位组合对应最佳位置也能同时确定,即为所有i个组合下适应度值最低的点位组合,在这些点位布置温度传感器,以达到对鸡舍内空气温度的整体监测。

本发明提供的基于遗传算法的鸡舍温度传感器布置优化方法,通过使用空间插值的方法,增加鸡舍内部空间的温度数据,能够减少对温度传感器初始位置选取的依赖;将温度数据按时间序列进行处理,更加适用于鸡舍这种变化明显、不规律的环境,使得结果更为准确;根据丰富后的温度数据集,借助遗传算法进行优化,得到的结果即为最优温度传感器组合的编号,简单易实现。本发明提供的基于遗传算法的鸡舍温度传感器布置优化方法,具有监测过程简单易实现、监测结果准确的特点。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号