首页> 中国专利> 一种模拟体内微生物-肠-脑轴信号传导过程的仿生微流控芯片

一种模拟体内微生物-肠-脑轴信号传导过程的仿生微流控芯片

摘要

一种模拟体内微生物‑肠‑脑轴信号传导过程的仿生微流控芯片,所述微流控芯片主要由顶层芯片、纳米多孔膜、微米多孔膜和底层芯片组成。所述芯片包括肠道单元、血脑屏障的流入和外排单元以及大脑单元,芯片上接种有肠道微生物和多种人体细胞,可以模拟体内微生物‑肠‑脑轴的代谢、免疫和激素等信号传导过程,可以用于开展肠道菌群与中枢神经系统作用的分子机制研究以及精神药物和精神益生菌的筛选和评价研究。本发明将肠道微生物、肠道单元、血脑屏障和大脑单元有机的整合在一个芯片上,构建了一个能够模拟体内MGB轴信号传导过程的体系,解决了以往芯片功能单一化的问题,引入肠道微生物使所述芯片更接近体内真实微环境,更容易在中枢神经系统疾病领域发现新的疗法并推动个性化医学的发展。

著录项

  • 公开/公告号CN112958172A

    专利类型发明专利

  • 公开/公告日2021-06-15

    原文格式PDF

  • 申请/专利权人 北京航空航天大学;

    申请/专利号CN202110208528.8

  • 发明设计人 郝梓凯;刘义元;刘红;

    申请日2021-02-24

  • 分类号B01L3/00(20060101);C12M3/00(20060101);C12M3/06(20060101);C12M1/34(20060101);C12M1/12(20060101);C12M1/00(20060101);C12N5/09(20100101);C12N5/071(20100101);C12N5/079(20100101);C12N5/0797(20100101);C12N1/20(20060101);C12Q1/02(20060101);

  • 代理机构

  • 代理人

  • 地址 100191 北京市海淀区学院路37号

  • 入库时间 2023-06-19 11:27:38

说明书

技术领域

本发明涉及将微流控芯片技术应用到体内组织工程的模拟与应用领域,具体地,本发明涉及一种模拟体内微生物-肠-脑轴信号传导过程的仿生微流控芯片及其应用。

背景技术

人们很早就已认识到大脑与肠道之间的双向通讯(称为肠-脑轴):大脑通过运动性调节,即分泌、吸收来自血流的代谢物质来调节胃肠道;同时,肠道也会影响大脑的功能和行为。近年来,随着研究发现肠道微生物与大脑之间也存在双向相互作用,肠-脑轴便发展为微生物-肠-脑(MGB)轴。MGB轴是肠道微生物与大脑之间发生信号传导的关键双向通讯路径,肠道微生物可经由神经、免疫、激素、代谢等信号传导途径在MGB轴作用下影响中枢神经系统(CNS),一方面,肠道微生物不仅可以产生生物活性肽,包括神经递质(包括多巴胺、γ-氨基丁酸、乙酰胆碱等)、次级胆汁酸、短链脂肪酸(SCFAs)、脂多糖、脑源性神经营养因子和肠激素等,这些代谢产物不仅可以直接与神经系统相互作用,激活交感神经元,还可以通过血脑屏障(BBB)影响CNS。另一方面,肠道微生物可以直接影响免疫系统,这是肠道菌群与神经系统之间沟通的关键途径。肠道菌群失衡,肠道通透性增加,肠道微生物刺激免疫机制或Toll样受体介导免疫产生细胞因子,经由血液循环扩散和血脑屏障对CNS产生影响。相反,大脑亦可以通过神经-免疫-内分泌等信号传导途径调控MGB轴进而影响肠道微生物。但是,在健康和疾病期间,MGB轴复杂的双向信号传导机制还未被完全理解,特别是肠道菌群与中枢神经系统疾病的因果关系还有待于进一步研究。

同时,MGB轴(特别是肠道微生物)已成为有效预防和治疗中枢神经系统疾病的潜在靶标,挖掘肠道微生物组中潜在的精神药物可能为开发新的干预措施提供方向。围绕着MGB轴,研究人员目前正在研发一种新型的精神药物,即精神益生菌(Psychobiotic),定义为“一种活生物体,如果流入足够量,可以为患有精神病的患者带来健康益处。”此后,Psychobiotic又被扩展为“任何通过细菌介导的对大脑有益的外源性影响”,包括一系列可以影响MGB轴的物质,如益生菌,益生元,合生元和后生元等。考虑到肠道菌群在体内的巨大作用,最近的多项研究也表明,在任何有关体内药物作用机理包括有益作用或不利作用的研究中都必须考虑肠道菌群。在大多数情况下,我们可以利用肠道菌群提供新的治疗选择,而在其他情况下,例如在抗精神病药中,这些药物可能通过激活MGB轴信号发挥其不利作用。由此可见,构建MGB轴体外模型,对于研究肠道微生物与CNS作用的分子机制、肠道菌群与CNS疾病的因果关系以及基于MGB轴发挥作用的精神药物和精神益生菌的评价和筛选研究等起着至关重要的作用。

顾名思义,MGB轴体外模型包括肠道单元、血脑屏障单元和大脑单元。虽然,现有的体外仿生芯片,已经包括可模拟肠道微生物与肠上皮细胞之间的相互作用的肠道芯片、可模拟体内代谢过程的神经-血管单元(NVU)芯片(包括血脑屏障和大脑单元),但还未见有通过血液循环系统将肠道、血脑屏障和大脑单元有机结合起来的,可模拟体内MGB轴信号传导过程的仿生微流控芯片。

微流控芯片技术作为一门迅速发展起来的科学技术,已经在体内组织和器官的模拟与应用领域展现了其独特的魅力和优势,更因其同细胞尺寸匹配、环境同体内生理环境相近、在时间和空间维度上能够提供更为精确的操控,易于通过灵活设计实现多种微生物和细胞功能研究等特点而成为新一代人体组织工程研究的重要平台。应用微流控技术构建具有模拟微生物、肠道和大脑之间的代谢、免疫和激素信号传导过程的仿生器官芯片,对研究MGB轴分子机制、肠道菌群与CNS疾病的因果关系以及基于MGB轴发挥作用的精神药物和精神益生菌的评价和筛选具有十分重要的优势和意义。

发明内容

针对上述问题,本发明提供了一种模拟体内MGB轴信号传导过程的仿生微流控芯片及其应用,该芯片可以模拟体内MGB轴的代谢、免疫和激素等信号传导过程,用以开展MGB轴分子机制、肠道菌群与CNS疾病的因果关系以及基于MGB轴发挥作用的精神药物和精神益生菌的评价和筛选研究。

该微流控芯片主要由顶层芯片、纳米多孔膜、微米多孔膜和底层芯片组成,顶层芯片分为左右两部分,左侧部分由回字形主通道、回字形主通道入口和出口组成,右侧部分由上半圆形通道、上半圆形通道入口和出口、螺旋形主通道、螺旋形主通道入口和出口、下半圆形通道以及下半圆形通道入口和出口组成;底层芯片也分为左右两部分,左侧部分由回字形主通道、回字形主通道入口和出口组成,右侧部分由上半圆形通道、上半圆形通道入口和出口、螺旋形主通道、螺旋形主通道入口和出口、下半圆形通道以及下半圆形通道入口和出口组成;顶层芯片和底层芯片的各通道出入口交错设计,以保证各通道出入口在组装好的芯片上表面能够相互避开,即不影响操作,也可避免接触污染。

纳米多孔膜和微米多孔膜分别不可逆封接于顶层芯片的左、右两部分的下表面,封有顶层芯片的纳米多孔膜和微米多孔膜下表面与底层芯片的上表面进行PDMS粘合封接;完全封接在一起的上下两层芯片再封接在洁净玻璃上,构成完整的芯片。

所述顶层芯片上的所有通道宽1-2mm,高1-2mm;底层芯片上的所有通道宽1-2mm,高0.2-1mm。

所述微流控芯片材料为聚二甲基硅氧烷(PDMS)、氢化苯乙烯-丁二烯嵌段共聚物(SEBS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)或聚乙烯(PE)材质;所述纳米和微米多孔膜为高分子材料膜或生物材料膜,高分子材料膜至少包括PDMS膜、PC膜、硝酸纤维膜,所述生物材料膜至少包括海藻酸膜、壳聚糖膜、胶原膜和明胶膜;纳米多孔膜的孔径为50-450nm,孔密度为4×10

所述微流控芯片的左侧回字形通道模拟肠道单元,右侧上下半圆通道分别模拟血脑屏障(BBB)的流入和外排单元,右侧中间的螺旋形通道模拟大脑单元。。

所述微流控芯片按照以下方法构建而成:

(1)微流控芯片的制作

上述微流控芯片的制备方法优选采用软光刻技术,主要分为两步:芯片模板(阳模)的制作和PDMS芯片的浇注成型。按照上述尺寸分别制备的顶层和底层阳模,然后反转得到顶层和底层PDMS芯片,再与聚碳酸酯膜、玻璃基片组合成为最终的整合微流控芯片。

(2)肠道单元的构建

优选的,首先,将人结直肠腺癌细胞(Caco-2)悬液(6×10

(3)血脑屏障单元(BBB)的构建

优选的,首先,将人星形胶质细胞(HA)和人脑血管周细胞(HBVP)(数量比为3:1)以1×10

(4)大脑单元的构建

优选的,首先,将人海马神经干细胞(HIP-009)以1×10

(5)模拟体内MGB轴信号传导过程的仿生微流控芯片的运行

首先,将构建成功的肠道单元、BBB流入单元、大脑单元及BBB外排单元按照以下方式依次进行连接:①通过外接管道将BBB流入单元的顶层通道(2)的出口(202)与大脑单元的顶层通道(3)的入口(301)相连;②通过外接管道将大脑单元的顶层通道(3)的出口(302)与BBB外排单元的顶层通道(4)的入口(401)相连;③通过外接管道将肠道单元的底层通道(5)的出口(502)与BBB流入单元的底层通道(6)的入口(601)相连;④通过外接管道将大脑单元的底层通道(7)的入口(701)和出口(702)相连。各单元按照以上方式连接好后,接着,通过蠕动泵驱动不同的液体流(1μl/min)灌注进芯片的不同通道,从而实现模拟体内MGB轴信号传导过程的仿生微流控芯片的运行。具体灌注方式如下:①通过蠕动泵从肠道单元顶层通道(1)的入口(101)灌进缺氧的混合培养基(主要含DMEM和YCFA),经过肠道单元顶层通道(1)之后,再从其出口(102)排出;②通过蠕动泵从BBB流入单元的顶层通道(2)的入口(201)灌进神经元分化培养基,经过BBB流入单元的顶层通道(2)、大脑单元的顶层通道(3)和BBB外排单元的顶层通道(4)之后,再从通道(4)的出口(402)排出;③通过蠕动泵从肠道单元的底层通道(5)的入口(501)灌进内皮细胞培养基,经过BBB流入单元的底层通道(6)之后,再从其通道(6)的出口(602)排出;④通过蠕动泵从BBB流入单元的底层通道(6)的入口(601)灌进内皮细胞培养基,经过BBB流入单元的底层通道(8)之后,再从其出口(802)排出。

所述的模拟体内MGB轴信号传导过程的仿生微流控芯片的应用,其特征在于:可采用上述体系,开展肠道菌群与中枢神经系统(CNS)作用的分子机制研究、肠道菌群与CNS疾病的因果关系探究以及基于MGB轴发挥作用的精神药物和精神益生菌的评价和筛选研究。具体过程如下:

(1)对在肠道单元顶层通道中共同培养的肠上皮细胞Caco-2和肠道微生物进行染色,并通过荧光显微镜观察其共存状态;

(2)常规免疫染色,ZO-1免疫染色,表征肠道屏障以及血脑屏障紧密连接情况;

(3)在肠道单元的顶层芯片的通道中添加含有FITC标记的右旋糖苷,分别于不同时间和不同单元收集灌流液,在酶标仪中检测其吸光度值,表征肠道屏障和血脑屏障的通透性;

(4)在肠道单元顶层芯片施加精神药物,经过与肠道菌群相互作用后,检测穿透肠道屏障和血脑屏障到达大脑单元的短链脂肪酸的种类和数量,以此评价精神药物的疗效。

本发明基于微流控芯片的模拟体内MGB轴信号,其中,肠道单元接种有肠道微生物、肠上皮细胞和肠微血管内皮细胞,顶层通道中肠道菌群与肠上皮细胞共培养,可以模拟体内肠道菌群与肠道细胞的相互作用,包括代谢、激素和免疫信号传导等过程;底层通道中接种有肠微血管内皮细胞,可以模拟肠道内药物、激素、微生物代谢产物和细胞免疫因子等物质通过肠道屏障进入血液循环的过程;血脑屏障单元接种了人星形胶质细胞、周细胞和脑微血管内皮细胞,可模拟血脑屏障的生理功能,血脑屏障流入单元模拟了血液中化合物进入到脑组织的过程,而BBB外排单元则模拟了脑组织中化合物外排到血液的过程;在大脑单元的底层通道中,人类海马来源的神经干细胞分化为人类原代神经细胞,包括约60%的神经胶质细胞和40%的神经元,这些细胞可以产生谷氨酸,γ-氨基丁酸(GABA),多巴胺和血清素等,基于此,大脑单元可以模拟通过血脑屏障的化合物与大脑组织的相互作用。

本发明将肠道菌群与肠道细胞共培养、肠道-神经血管单元(包括血脑屏障和大脑单元)的构建与表征等功能集成到一块微流控芯片上,构建了一个能够模拟体内MGB轴信号传导过程的体系,解决了以往芯片功能单一化的问题,引入肠道微生物使所述芯片更接近体内真实微环境,不但能够模拟体内肠道菌群与CNS之间的复杂功能联系,实现基于MGB轴的代谢、免疫及激素等信号转导途径研究精神药物和益生菌对CNS的影响机制研究,同时还可以基于此平台进行精神药物或精神益生菌的评价和筛选研究,更容易在中枢神经领域创新出新的研究成果,并推动个性化医学的发展。

附图说明

图1本发明微流控芯片示意图;a,顶层芯片通道结构示意图;b,多孔膜示意图;c,底层芯片通道结构示意图;d,模拟体内MGB轴信号传导过程的运行示意图。

图2MGB模型的完整性鉴定;a,肠上皮细胞Caco-2和肠道微生物的活死细胞染色图;b,Caco-2细胞的ZO-1免疫荧光图;c,血脑屏障hBMECs细胞ZO-1免疫荧光图;d,星形神经胶质细胞和神经元的共聚焦荧光显微照片。

图3微流控芯片的肠道屏障、BBB流入屏障和BBB外排屏障的通透性鉴定

图4基于肠道菌群-肠-脑轴的SCFAs代谢途径对精神药物氟西汀的评价

具体实施方式

下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明

实施例1

设计并制作微流控芯片,如图1所示。

该微流控芯片主要由顶层芯片、纳米多孔膜、微米多孔膜和底层芯片组成,顶层芯片分为左右两部分,顶层芯片左侧部分由第一回字形主通道(1)、第一回字形主通道入口(101)和第一回字形主通道出口(102)组成,顶层芯片右侧部分由第一上半圆形通道(2)、第一上半圆形通道入口(201)和第一上半圆形通道出口(202)、第一螺旋形主通道(3)、第一螺旋形主通道入口(301)和第一螺旋形主通道出口(302)、第一下半圆形通道(4)以及第一下半圆形通道入口(401)和第一下半圆形通道出口(402)组成;底层芯片也分为左右两部分,底层芯片左侧部分由第二回字形主通道(5)、第二回字形主通道入口(501)和第二回字形主通道出口(502)组成,底层芯片右侧部分由第二上半圆形通道(6)、第二上半圆形通道入口(601)和第二上半圆形通道出口(602)、第二螺旋形主通道(7)、第二螺旋形主通道入口(701)和第二螺旋形主通道出口(702)、第二下半圆形通道(8)以及第二下半圆形通道入口(801)和第二下半圆形通道出口(802)组成;顶层芯片和底层芯片的各通道出入口交错设计,以保证各通道出入口在组装好的芯片上表面能够相互避开,即不影响操作,也可避免接触污染。纳米多孔膜(9)和微米多孔膜(10)的上表面分别不可逆封接于顶层芯片的左、右两部分的下表面,封有顶层芯片的纳米多孔膜和微米多孔膜的下表面分别与底层芯片的左、右两部分的上表面进行PDMS粘合封接;完全封接在一起的上下两层芯片再封接在洁净玻璃上,构成完整的芯片。

所述顶层芯片上的所有通道宽1mm,高1mm;底层芯片上的所有通道宽1mm,高0.3mm。

所述微流控芯片材料为PDMS材质;所述纳米和微米多孔膜均为PC膜,纳米多孔膜(9)的孔径为450nm,孔密度为4×10

所述微流控器官芯片的左侧回字形通道模拟肠道单元,右侧上下半圆通道分别模拟血脑屏障(BBB)的流入和外排单元,右侧中间的螺旋形通道模拟大脑单元。

上述微流控芯片的制备方法采用软光刻技术,主要分为两步:芯片模板(阳模)的制作和PDMS芯片的浇注成型。按照上述尺寸分别制备的顶层和底层阳模,然后反转得到顶层和底层PDMS芯片,再与纳米多孔膜、微米多孔膜、玻璃基片组合成为最终的整合微流控芯片。

肠道单元的构建:首先,将人结直肠腺癌细胞(Caco-2)悬液(6×10

BBB的构建。使用200μg/ml的纤连蛋白和胶原蛋白IV的混合物包被上述微流控芯片的BBB单元5h,将人星形胶质细胞(HA)和人脑血管周细胞(HBVP)(数量比为3:1)以1×10

大脑单元的构建。使用5μg/ml多聚-D-赖氨酸包被大脑单元底层芯片的通道(7)15分钟,将人海马神经干细胞(HIP-009)以1×106cells/mL的密度接种在底层芯片的通道(7)中,在37℃的细胞培养箱中孵育1h,使其贴壁生长,然后,将神经元分化培养基灌注(1μl/min)进底层通道(7)中,直到HIP-009分化成混合的原代人类神经细胞(约60%的神经胶质细胞和40%的神经元),从而构建完成大脑单元。

模拟体内MGB轴信号传导过程的仿生微流控芯片的运行。首先,将构建成功的肠道单元、BBB流入单元、大脑单元及BBB外排单元按照以下方式依次进行连接:①通过外接管道将BBB流入单元的顶层通道(2)的出口(202)与大脑单元的顶层通道(3)的入口(301)相连;②通过外接管道将大脑单元的顶层通道(3)的出口(302)与BBB外排单元的顶层通道(4)的入口(401)相连;③通过外接管道将肠道单元的底层通道(5)的出口(502)与BBB流入单元的底层通道(6)的入口(601)相连;④通过外接管道将大脑单元的底层通道(7)的入口(701)和出口(702)相连。各单元按照以上方式连接好后,接着,通过蠕动泵驱动不同的液体流(1μl/min)灌注进芯片的不同通道,从而实现模拟体内MGB轴信号传导过程的仿生微流控芯片的运行。具体灌注方式如下:①通过蠕动泵从肠道单元顶层通道(1)的入口(101)灌进缺氧的混合培养基(主要含DMEM和YCFA),经过肠道单元顶层通道(1)之后,再从其出口(102)排出;②通过蠕动泵从BBB流入单元的顶层通道(2)的入口(201)灌进神经元分化培养基,经过BBB流入单元的顶层通道(2)、大脑单元的顶层通道(3)和BBB外排单元的顶层通道(4)之后,再从通道(4)的出口(402)排出;③通过蠕动泵从肠道单元的底层通道(5)的入口(501)灌进内皮细胞培养基,经过BBB流入单元的底层通道(6)之后,再从其通道(6)的出口(602)排出;④通过蠕动泵从BBB流入单元的底层通道(6)的入口(601)灌进内皮细胞培养基,经过BBB流入单元的底层通道(8)之后,再从其出口(802)排出。

实施例2

MGB轴仿生微流控芯片的完整性鉴定

将培养运行5天后的微流控芯片的两层PDMS拆开,对肠道单元的纳米多孔膜上共同培养的肠上皮细胞Caco-2和肠道微生物进行活死细胞染色,并通过荧光显微镜观察其共存状态,如图2a所示,可见肠道微生物与Caco-2细胞在肠道单元中可以共存。常规免疫荧光染色法分别表征肠道屏障Caco-2细胞和血脑屏障hBMECs细胞表面ZO-1蛋白的表达,如图2b和2c所示,可见都已形成紧密连接,具有屏障结构;对大脑单元底层芯片中人海马神经干细胞的分化情况进行共聚焦荧光显微观察,如图2d所示,可见人海马神经干细胞已分化成星形神经胶质细胞(约60%)和神经元(约40%)的混合物。

实施例3

MGB轴仿生微流控芯片的通透性鉴定

在肠道单元的顶层芯片的通道(1)添加含有FITC标记的右旋糖苷,分别于第1、2、3、4、5、6、7、8h收集肠道单元底层通道出口(502)、BBB流入单元的顶层通道出口(202)、BBB外排单元的顶层通道出口(402)的灌流液,于酶标仪中检测吸光度值,吸收光波长为490nm,空白对照组为无细胞附着的MGB轴仿生微流控芯片。如图3所示,随着时间的增加,多孔膜上具有细胞屏障的右旋糖苷的透过量逐渐增加,曲线上升平缓,4-5h后达到平衡状态;对照组(即仅有PC膜无细胞附着)的右旋糖苷的透膜速率快,曲线急速上升,1-2h即可达到平衡状态。结果表明,当有细胞在上述芯片的多孔膜上培养时,右旋糖苷的透膜速率显著下降,这表明芯片的肠道屏障和血脑屏障模型已经形成。

实施例4

基于肠道菌群-肠-脑轴的代谢途径对精神药物的评价应用

在肠道单元的顶层芯片的通道(1)中添加氟西汀(1mg),分别于第0h和第24h收集BBB流入单元的顶层通道出口(202)即进入大脑单元的灌流液,采用气-质联用仪进行质谱分析其中的短链脂肪酸(SCFAs)含量,有大量研究表明SCFAs不仅可以直接与神经系统相互作用,还可以通过血脑屏障影响行为和神经信号传导,SCFA可以减少炎症细胞因子并改变神经元生物标志物的分泌,对神经系统具有益处,检测血液循环系统中SCFAs的含量可以用来评估精神药物对神经系统的作用。如图4所示,采用上述芯片可以检测到氟西汀可以增加芯片中通过BBB流入大脑单元的SCFAs含量。这表明,采用上述芯片,可以开展肠道菌群与中枢神经系统作用的分子机制研究以及基于MGB轴发挥作用的精神药物和精神益生菌的筛选和评价研究。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号