首页> 中国专利> 一种超微细粉化沙美特罗替卡松的制备方法

一种超微细粉化沙美特罗替卡松的制备方法

摘要

本发明公开了一种超微细粉化沙美特罗替卡松的制备方法,所述制备方法为超临界抗溶剂法,将原料沙美特罗、丙酸氟替卡松和辅料溶解在溶剂中制成均匀溶液,然后通过超临界CO2法结晶斧,制得超微粉化沙美特罗替卡松颗粒,细微颗粒部分(<5μm)百分比超过80%。本发明制备方法能够实现真正意义上的协同递送,在同等药物剂量下,疗效更为显著。

著录项

  • 公开/公告号CN112933047A

    专利类型发明专利

  • 公开/公告日2021-06-11

    原文格式PDF

  • 申请/专利权人 深圳市海滨制药有限公司;

    申请/专利号CN201911268080.8

  • 发明设计人 卢兆强;闻聪;欧阳陵;罗劲松;

    申请日2019-12-11

  • 分类号A61K9/14(20060101);A61K31/56(20060101);A61K31/137(20060101);A61P11/06(20060101);A61P11/00(20060101);

  • 代理机构21254 沈阳友和欣知识产权代理事务所(普通合伙);

  • 代理人杨群

  • 地址 518000 广东省深圳市盐田区沙头角深盐路2003号

  • 入库时间 2023-06-19 11:24:21

说明书

技术领域

本发明属于化学药物制剂生产技术领域,具体涉及一种超微细粉化沙美 特罗替卡松的制备方法。

背景技术

沙美特罗替卡松粉吸入剂作为第一个吸入型糖皮质激素/长效β

吸入给药治疗肺部疾病的药物制剂的有效性取决于药物在肺部沉积 量,但目前,已上市的药物实际上的肺部有效沉积量只有药物设定标示剂 量10%~30%,这致使需要给予更大的药物剂量才能达到治疗效果,不仅会 增加成本,还会降低患者的依从性。药物能否到达肺部发挥作用与药物粒 径密切相关:研究表明气溶胶颗粒空气动力学直径大于10μm时,倾向于 沉积于口咽部;5-10μm时,倾向沉积于上支气管;约3μm时,能沉积在 肺泡部;纳米级亚细颗粒容易被再次呼出肺部。一般吸入制剂药物粒径大 小控制在1-5μm之间,从而使药物沉积在肺部有效部位

“舒利迭”(沙美特罗替卡松粉吸入剂)原研公司(GSK)采用的给 药装置为准纳器,其原理将药物通过物理混合装载在药囊中,患者在使用 的时候通过刺破铝箔进而将药物递送至肺部,但其有效药物肺部沉积率仅 为12-17%,造成较低的肺部沉积率一方面是由于装置本身设计导致的,另 一方面微粉化后的药物粒径未在可获得理想临床疗效的范围(微粒大小2-5 μm),同时,两种药物粉末在递送至肺部的过程中,会由于药物的性质而未能达到真正协同递送的效果,即药效/生物利用度未能最大化。

目前,药物的微粉化可分为机械方法和溶剂相分离法,最常用的机械 方法是球磨粉碎和气流粉碎,在其粉碎过程中产生的摩擦力会使温度升高, 不利于热敏药物的加工,药物脆性不足也不利于加工喷雾干燥是另一种微 粉化的方法,这种方法也需要较高的温度来除去溶剂传统的相分离技术有 粒径大,大小分布不均匀及有机溶剂残余量多的缺点。总体而言,传统的 技术都存在所得粒子尺寸分布范围较大,难以控制粒径大小的缺点。

微粉的粒径是影响吸入给药的重要因素之一,超细微粒的研制已成为 一个热门的研究领域。超临界流体技术具有以下优势:能够有效控制粒径 大小、分布和形貌,粒径分布窄;极少有机溶剂残留,绿色环保,能减少 投资成本;克服了表面张力的影响,固体微粒不易发生聚集;可以在接近 环境温度下进行,从而通过选择合适的抗溶剂避免颗粒的热降解,能够保 持生物活性;适合连续操作,操作简便、速度快、产率高;克服传统生产 方法的不足。

激光衍射法和碰撞法是吸入制剂粒径分布和大小的常用测试方法,而 Spraytec和NGI(Next Generation Impactor,新一代多级撞击器)分别是碰撞 法和激光衍射法测试粒子粒径分布的代表仪器。碰撞法和激光衍射法测试 原理不同,NGI模拟的是粒子在肺部的动态过程,是药物粒子在肺部沉积 的体外反映,而Spraytec是实时动态地反映粒子在其所处的测试环境中的 粒径分布;两者测量结果彼此相互补充。但是,碰撞法和激光衍射法测量 吸入剂粒径大小及分布时,会受到测试环境温度、湿度、测试流速及装置 温度等因素影响,因此在实际测试粒径大小时,需要探究环境条件(测试 温度和湿度)、测试流速等对粒径大小和分布的影响。而目前未有较为完整 的关于沙美特罗替卡松粒径的测试条件。

因此通过超临界流体技术对沙美特罗、丙酸氟替卡松和辅料进行微粉 化,不仅能够增强药物稳定性、改善分体流动性,还能减少团聚,实现真 正意义的协同递送;同时探究了不同条件下NGI和Spraytec的测试结果, 以给出更加贴近人体肺部实际的沉积率并给未来制定沙美特罗替卡松测试 统一标准时提供参考意见。

发明内容

本发明所要解决的技术问题是克服现有微粉化技术的不足,使复方粉末达 到真正协同递送效果,以及更稳定高效的肺部沉积率,提供一种超微细粉化沙 美特罗替卡松的制备方法。

为解决上述技术问题,本发明采用如下技术方案:

一种超微细粉化沙美特罗替卡松的制备方法,包括通过超临界流体技术制 备原料,所述原料包括沙美特罗、丙酸氟替卡松和辅料。

进一步地,制备技术为超临界反溶剂法。

进一步地,超临界反溶剂法所用到的反溶剂为超临界CO

进一步地,超临界反溶剂法所用到的有机溶剂为乙醇。

进一步地,超临界反溶剂法所采用的压力为10-30MPa,温度为30-55℃。

进一步地,超临界反溶剂法的溶液流速为2-10mL/min。

进一步地,所述的沙美特罗、丙酸氟替卡松、辅料的投料比为1:2-10:10-98。

进一步地,所述的辅料为药学可接受的辅料,优选乳糖、甘露醇的一种或 几种。

进一步地,所述辅料为重结晶后表面光滑的小颗粒乳糖。

进一步地,所述的制备方法包括将所述的原料溶解在溶剂中制成均匀溶液, 然后将上述溶液倒入移液管,通过溶剂计量泵加压后以一定的流速进入喷嘴喷 出,超临界CO

通过上述技术方案的实施,本发明与现有技术相比具有如下优势:

本发明制备的沙美特罗替卡松颗粒的FPF%值更大,真正实现了沙美特罗和 丙酸氟替卡松的协同递送,生物利用度高;同时最大程度地降低有机溶剂的残 留量,能够提高沙美特罗替卡松粉吸入剂的治疗效果和在达到同等疗效情况下 能够减少药物的给予剂量。另外,探究不同环境下NGI和Spraytec测试沙美特 罗替卡松颗粒的粒径分布和大小,给出最优测试条件,为沙美特罗替卡松粉吸 入剂未来测定统一标准提供一定参考。

为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例, 对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于 解释本发明,并不用于限定本发明。

沙美特罗替卡松的治疗疗效与粉颗粒大小和均匀度有着密切的关系,细颗 粒百分率越高,药物在肺部沉积率越高,药物能被患者更有效地吸收,使疗效 更显著。作为复方制剂,通过物理混合等方法难以实现真正意义的协同递送。 本发明涉及沙美特罗替卡松的干粉的全新超微粉化工艺,使用超临界CO

下面结合具体实施例对本发明做进一步详细的说明,但不限于这些实例。

实施例1

超临界反溶剂法所设定的温度筛选

试验方法:称取沙美特罗100g,加入2000mL乙醇溶解并搅拌均匀,称取 丙酸氟替卡松200g,100g重结晶后表面光滑的小颗粒乳糖,加入去离子水2000 mL溶解;将两种溶液混合均匀制成均一溶液。首先通入二氧化碳进入结晶斧, 达到设定温度和压力10MPa且稳定一段时间后,将混合溶液通过喷嘴喷入结晶 斧,溶液流速为3mL/min,待溶液喷完后且持续通入二氧化碳一段时间后,随 后减压收集粉体进行分析,改变设定温度重复实验,检测结果见表1:

表1不同温度对于API微粉化粒径的影响(湿度环境:50%~70%RH)

由表1可以看出,API微粉化粒径随设定温度的升高而增大,当设定温度为 55℃时,D50型微粒粒径已接近6μm;当设定温度为30℃时,D50型微粒粒径 为1.54μm,综合考虑,优选设定温度为30℃。

实施例2

称取沙美特罗100g,加入2000mL乙醇溶解并搅拌均匀,称取丙酸氟替卡 松200g,100g重结晶后表面光滑的小颗粒乳糖,加入去离子水2000mL溶解; 将两种溶液混合均匀制成均一溶液。首先通入二氧化碳进入结晶斧,达到一定 温度30℃和压力10MPa且稳定一段时间后,将混合溶液通过喷嘴喷入结晶斧, 溶液流速为3mL/min,待溶液喷完后且持续通入二氧化碳一段时间后,随后减 压收集粉体进行分析。在环境温度为5℃时使用NGI和在5℃、湿度90%条件 下使用Spraytec测定粒径分布和大小,MMAD=3.20±0.18μm D50=3.38±0.25 μm。

实施例3

称取沙美特罗125g,加入2500mL乙醇溶解并搅拌均匀,称取丙酸氟替卡 松575g,1.0g重结晶后表面光滑的小颗粒乳糖,加入去离子水3000mL溶解; 将两种溶液混合均匀制成均一溶液。首先通入二氧化碳进入结晶斧,达到一定 温度30℃和压力15MPa且稳定一段时间后,将混合溶液通过喷嘴喷入结晶斧, 溶液流速为5mL/min,待溶液喷完后且持续通入二氧化碳一段时间后,随后减 压收集粉体进行分析。在环境温度为5℃时使用NGI和在5℃、湿度90%条件 下使用Spraytec测定粒径分布和大小,MMAD=3.01±0.21μm D50=3.18±0.33 μm。

实施例4

称取沙美特罗150g,加入3000mL乙醇溶解并搅拌均匀,称取丙酸氟替卡 松1500g,1.5g重结晶后表面光滑的小颗粒乳糖,加入去离子水5000mL溶解; 将两种溶液混合均匀制成均一溶液。首先通入二氧化碳进入结晶斧,达到一定 温度35℃和压力15MPa且稳定一段时间后,将混合溶液通过喷嘴喷入结晶斧, 溶液流速为5mL/min,待溶液喷完后且持续通入二氧化碳一段时间后,随后减 压收集粉体进行分析。在环境温度为5℃时使用NGI和在5℃、湿度90%条件 下使用Spraytec测定粒径分布和大小,MMAD=3.33±0.11μm D50=3.89±0.35 μm。

实施例5

不同湿度检测API微粉化情况

试验方法:称取沙美特罗100g,加入2000mL乙醇溶解并搅拌均匀,称取 丙酸氟替卡松200g,100g重结晶后表面光滑的小颗粒乳糖,加入去离子水2000 mL溶解;将两种溶液混合均匀制成均一溶液。首先通入二氧化碳进入结晶斧, 达到设定温度30℃和压力10MPa且稳定一段时间后,将混合溶液通过喷嘴喷 入结晶斧,溶液流速为3mL/min,待溶液喷完后且持续通入二氧化碳一段时间 后,随后减压收集粉体在不同湿度检测API微粉化情况,检测结果见表2:

表2不同湿度检测API微粉化情况(温度环境:室温20~30℃)

由表2可以看出,在不同湿度下,D50的粒径均在2~3.5之间,能有效沉 积在肺泡部中。

综上所述,本发明开发的一种超微粉化沙美特罗替卡松的制备方法克服现有 微粉化技术的不足,使复方粉末达到真正协同递送效果,以及更稳定高效的肺 部沉积率。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号