首页> 中国专利> 确定转换器系统的戴维南等效模型

确定转换器系统的戴维南等效模型

摘要

一种用于确定转换器系统(12)的转换器戴维南等效模型(52)的方法包括:接收在电网仿真器系统(14)与转换器系统(12)之间的公共耦合点(24)处所测量的耦合点电压和耦合点电流的测量值,其中所述电网仿真器系统(14)利用供应电压为所述转换器系统供电;以及通过将所述耦合点电压和所述耦合点电流的所述测量值输入到耦合系统模型(58)中来确定转换器戴维南等效模型(52)的转换器戴维南阻抗和转换器戴维南电压源,所述耦合系统模型(58)包括对所述转换器系统(12)和所述电网仿真器系统(14)进行建模的等式,并且根据所述等式,计算所述转换器戴维南阻抗和转换器戴维南电压源。

著录项

  • 公开/公告号CN112859638A

    专利类型发明专利

  • 公开/公告日2021-05-28

    原文格式PDF

  • 申请/专利权人 ABB瑞士股份有限公司;

    申请/专利号CN202011356864.9

  • 发明设计人 M·拉尔松;J·埃克勒;

    申请日2020-11-27

  • 分类号G05B17/02(20060101);G01R27/04(20060101);H02J3/00(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人郑浩;刘春元

  • 地址 瑞士巴登

  • 入库时间 2023-06-19 11:08:20

说明书

技术领域

本发明涉及用于确定转换器系统的转换器戴维南等效模型的方法、计算机程序、计算机可读介质和评估(evaluation)装置。此外,本发明涉及转换器系统。

背景技术

由于可再生能源的增加,功率电网在当前(in the moment)遭遇转换器系统的数量中的大增加。基于转换器的发电和负载与经过同步机器的常规直接连接的发电以及直接连接的电阻和马达负载是不同的,因为中间功率电子转换器采用从100 Hz一直到数kHz的频率范围中的快速切换,这引起被注入到电网的谐波的产生。而在过去,转换器系统对功率系统操作具有小影响,因为所连接的转换器的共用是小的,情况不再是这样,特别是在特殊类型的网络(例如其中全部发电都是转换器连接的离岸风力田和太阳能场)中。

从数学观点来看,易于表明转换器生成的谐波对电网的影响不仅被转换器系统本身影响,而且还被它所连接到的电网影响。转换器谐波对电网的稳态影响的分析的常用模型是戴维南等效模型,其中利用串联连接的等效电压源和等效阻抗(它们对于频率谱给出)来代替转换器系统。

存在关于可如何确定与转换器系统有关的信息的若干已知方法。例如,US2014032148A1描述一种用于三相AC系统中的阻抗测量的方法,其中分流扰动信号被注入到三相AC系统中。

在US2013099800A1中,用于阻抗分析器的控制器和基础设施用来确定具有源和负载的多相系统的每相的传递函数,根据所述传递函数,能够计算源和负载的每个的阻抗。

ALENIUS HENRIK等人的“Impedance-Based Stability Analysis of Multi-Parallel Inverters Applying Total Source Admittance”(2019 20TH WORKSHOP ONCONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL),IEEE,2019年6月17日(2019-06-17),第1-8页)是科学论文,它提出与电气网并联连接的多个逆变器的稳定性分析。送往电网的电压和电流被测量,并且由此利用模拟,得到电网和逆变器的阻抗。使用逆变器的模型和电网的戴维南等效模型。

发明内容

本发明的目的是要提供与转换器系统的电气行为有关的更好信息,并且简化这个信息的采集。

这个目的通过独立权利要求的主题来实现。通过从属权利要求和以下描述,另外的示范实施例是显而易见的。

本发明的第一方面涉及一种用于确定转换器系统的转换器戴维南等效模型的方法。转换器系统可包括转换器和电机(例如马达或发电机)。此外,转换器系统可包括原动机,该原动机由电机和/或转换器来驱动。转换器系统还可连接到光伏系统。转换器和/或电机可以是中压系统的组成部分,和/或可适合于处理超过1 kV和/或超过100 A的电流。

戴维南等效模型可以是一种模型,该模型包括串联互连的等效电压源和等效阻抗,它们对于频率的范围和/或集合提供。可为被建模的系统的每相提供等效电压源和等效阻抗。通常,以下所述的系统可具有三相,但是该方法还可对一相或二相系统来执行。

按照本发明的实施例,该方法包括:接收在电网仿真器系统与转换器系统之间的公共耦合点处所测量的耦合点电压和耦合点电流的测量值,其中电网仿真器系统利用供应电压为转换器系统供电。可在时间周期内记录测量值,其中电网仿真器系统利用仿真电网电压(即,供应电压)正为转换器系统供电。仿真器系统本身可包括转换器,该转换器从实际电网电压来生成仿真电网电压。为此,仿真电网电压在频率和/或幅值上可略微改变,以改进转换器系统的系统响应。

可对公共点的每相来测量耦合点电压和耦合点电流的测量值。还可能的是,由测量值随时间所提供的测量信号从时域变换为频域。

按照本发明的实施例,该方法进一步包括:通过将耦合点电压和耦合点电流的测量值输入到耦合系统模型中来确定转换器戴维南等效模型的转换器戴维南阻抗和转换器戴维南电压源,该耦合系统模型包括对转换器系统和电网仿真器系统进行建模的等式,并且根据所述等式,计算转换器戴维南阻抗和转换器戴维南电压源。

戴维南阻抗可包括用于频率的范围和/或集合中的每个频率的复值。戴维南电压源可包括用于频率的范围和/或集合中的每个频率的实值。此外,可为转换器系统的每相提供戴维南阻抗和戴维南电压源的值。

可利用电压传感器和电流传感器在公共耦合点处产生测量值。公共耦合点是电网仿真器系统和转换器系统的互连点。在那里,当总体系统正操作时,测量电压和电流。利用耦合系统模型,总体耦合测试系统(即,电网仿真器系统和转换器系统)可共同被建模。按照这种方式,电网对转换器系统的响应的影响也可被建模。可利用电网仿真器模型对电网仿真器系统建模。连同转换器戴维南模型一起,可例如借助于基尔霍夫定则从耦合系统模型来确定等式。这些等式对耦合系统的电气行为进行建模,并且由此例如利用来自公共耦合点的已知测量值,能够计算转换器戴维南模型的参数,即,转换器戴维南阻抗和转换器戴维南电压源。

耦合系统模型和/或等式可实现为计算装置中的函数。当测量值被输入到这个函数中并且被评估时,能够确定转换器戴维南阻抗和转换器戴维南电压源。

随后,当转换器系统正在现场中操作、连接到大规模电气网时,转换器戴维南阻抗和转换器戴维南电压可用来例如由大规模电气网的操作员来优化大规模电气网的操作。

按照本发明的实施例,利用电网仿真器元件(它们的每个具有电网仿真器参数)的集合对电网仿真器系统进行建模。可利用电网仿真器元件(例如电压源和一个或多个阻抗)对电网仿真器模型进行建模。

这个电压源也可被建模为用于频率的范围/集合以及可选的一相或多相的实值。一个或多个阻抗可被建模为用于频率的范围/集合以及可选的一相或多相的复值。电网仿真器参数可以是这个实值和/或复值。

电网仿真器元件可反映电网仿真器和/或其等效模型的实际组件,例如转换器、变压器、过滤器等。

例如,电网仿真器参数可包括电网电压源、将电网电压源与公共耦合点互连的电网串行阻抗和/或电网分流阻抗(其可连接到公共耦合点和/或可将公共耦合点接地)的至少一个。电网电压源可对转换器建模。电网串行阻抗可对变压器(该变压器将转换器与公共耦合点互连)建模。电网分流阻抗可对于与公共耦合点互连的电气过滤器进行建模。电气过滤器可将公共耦合点接地。

按照本发明的实施例,通过下列方式来计算简化耦合系统模型:利用具有电网仿真器参数的第一集合的电网元件确定第一耦合系统模型,并且利用具有电网仿真器参数的第二集合的电网元件确定第二耦合系统模型;以及通过将第二耦合系统模型的等式代入到第一耦合系统模型的等式中来以分析的方式消除电网仿真器参数。在参数的至少一个(例如电压源或比阻抗)相互不同的意义上,电网仿真器参数的集合可以是不同的。可能的是,存在相等的参数。

可能的是,当电网仿真器参数的两个不同集合用于等式中时,对耦合系统建模的等式相对于转换器戴维南电压源和转换器戴维南阻抗是分析上可解的。在这种情况下,当电网仿真器参数的相应集合在电网仿真器系统中实现时,可从必须被测量的测量值的两个集合以及只在转换器戴维南电压源、转换器戴维南阻抗中的等式以及等式集合消除电网仿真器参数。

按照本发明的实施例,测量值被输入到简化耦合系统模型中。电网仿真器参数的消除可离线(即,在执行该方法之前)执行,以及仅所产生的等式(即,简化耦合系统模型)可作为计算装置中执行该方法的函数来实现。

按照本发明的实施例,电网仿真器系统包括可调整电气组件,使得当调整电气组件时,改变电网仿真器参数。例如,可调整组件是具有可交换电容器和/或可交换电感器的过滤器电路和/或具有可调整调制方案的转换器的至少一个。电网仿真器参数可以是或者可包括具有不同电容器和/或不同电感器的过滤器电路的已知阻抗。电网仿真器参数还可以是或者可包括已知电压源,所述已知电压源以不同操作方案(例如不同频率、调制方案)对转换器建模。

按照本发明的实施例,在电气组件被调整成不同设定的情况下确定耦合点电压和耦合点电流的测量值的两个集合,其中测量值的两个集合被输入到简化系统模型中。可能的是,在电网仿真器系统被配置情况下在第一遍(pass)中确定测量值的第一集合,使得可利用第一电网仿真器参数对它建模。此后,可重新配置电网仿真器系统,例如可交换电容器和/或电感器。然后可利用第二电网仿真器参数对电网仿真器系统建模。在第二遍中,在重新配置之后,可确定测量值的第二集合。

已经确定简化耦合模型,使得转换器戴维南电压源和转换器戴维南阻抗能够只从测量值的两个集合来确定,因为已经消除电网仿真器参数。按照这种方式,可降低与电网仿真器参数(它们可与实际参数略有不同)相关的不准确度。

按照本发明的实施例,在电气组件被调整成至少三个不同设定的情况下确定耦合点电压和耦合点电流的测量值的至少三个集合。可通过组合测量值的两个不同集合来生成测量值的集合对。每对的测量值的两个集合可被输入到简化系统模型中,以产生每对的转换器戴维南阻抗和转换器戴维南电压源。有可能以电网仿真器系统的不同配置来执行多于二遍,其中在每遍中确定测量值的集合。按照这种方式,可确定若干中间转换器戴维南阻抗和中间转换器戴维南电压源,它们可因测量不准确度而彼此不同。

然后可通过将统计方法应用于中间转换器戴维南阻抗和中间转换器戴维南电压源来确定转换器戴维南等效模型的最终转换器戴维南阻抗和最终转换器戴维南电压源。例如,可对中间转换器戴维南阻抗和中间转换器戴维南电压源求平均。

按照本发明的实施例,在耦合系统模型中,利用电网戴维南等效模型(该电网戴维南等效模型包括电网戴维南阻抗和电网戴维南电压源)对电网仿真器系统建模。还可能的是,戴维南等效模型用于电网仿真器系统。可从电网仿真器系统的实际组件的参数来确定这个模型的参数(即,电网戴维南阻抗和电网戴维南电压源)。

按照本发明的实施例,从电网仿真器系统的电气组件的已知参数来确定电网戴维南阻抗和电网戴维南电压源。这类组件可以是转换器、变压器、过滤器等,如上所述。

按照本发明的实施例,在电气组件被调整成不同设定的情况下确定耦合点电压和耦合点电流的测量值的多个集合。如已经提到,可相对于电网仿真器系统的特定配置(例如比如不同电容器、电感器、变压器、转换器的不同调制方案等)来确定测量值的每个集合。这类不同调制方案可包括增加噪声的不同类型、改变载波频率、改变参考电压的幅度和/或相位等。

根据测量值的多个集合,可确定多个中间转换器戴维南阻抗和转换器戴维南电压源。这可通过形成测量值的集合对来利用简化耦合系统模型进行。这还可在相应电网仿真器参数被设置成对应配置的情况下通过将每个集合输入到耦合系统模型中进行。还可混合这两种方法。

按照本发明的实施例,通过从不同频率值下的中间转换器戴维南阻抗消除离群值来确定最终转换器戴维南阻抗。可能的是,与转换器戴维南电压源相比,中间转换器戴维南阻抗相对于彼此改变得更多。因此,统计方法可应用于中间转换器戴维南阻抗,例如离群值检测(outlier detection)和/或求平均。

按照本发明的实施例,通过对特别是来自从其中去除了离群值的中间转换器戴维南阻抗的中间转换器戴维南阻抗求平均来确定最终转换器戴维南阻抗。还可能是,相对于相邻频率对最终转换器戴维南阻抗求平均,即,平滑最终转换器戴维南阻抗。

按照本发明的实施例,通过对中间转换器戴维南电压源求平均来确定最终转换器戴维南电压源。还可能的是,对中间转换器戴维南电压源应用离群值检测。还可能的是,相对于相邻频率对最终转换器戴维南电压源求平均,即,平滑最终转换器戴维南电压源。

按照本发明的实施例,电网仿真器系统包括连接到电气网的电气转换器,该电气转换器适合于把来自电气网的电网电压转换为要供应给转换器系统的供应电压。电气转换器可被建模为电网仿真器模型中的电压源。通过使用不同调制方案和/或频率,这个电压源的电网仿真器参数可被设置成不同值。

按照本发明的实施例,电网仿真器系统包括变压器,该变压器连接在电气转换器的输出与公共耦合点之间。变压器可被建模为电网仿真器模型中的阻抗。

按照本发明的实施例,电网仿真器系统包括电气过滤器,该电气过滤器在一侧上可连接到公共耦合点和/或在另一侧上可被接地、三角形连接和/或星形连接。过滤器可被建模为电网仿真器模型中的另外的阻抗。过滤器可包括电容器和/或电感,它们可被交换,以用于将这个阻抗的电网仿真器参数设置成不同值。

按照本发明的实施例,耦合点电压和耦合点电流的测量值在被输入到耦合系统模型中之前经过傅立叶变换。可能的是,转换器戴维南阻抗和转换器戴维南电压源的计算在频域中执行。在时间周期内所获取的(例如测量值的每个集合的)测量值可经过离散傅立叶变换。等式可在频域中公式化。

最后,可相对于频率的集合来计算转换器戴维南阻抗和转换器戴维南电压源。还可能的是,相对于频率的集合来提供电网戴维南阻抗和电网戴维南电压源,它们可用于耦合系统模型中。频率的集合可以是利用傅立叶变换所确定的频率盒(frequency bin)。

还可能的是,对于测量值的不同集合(它们以不同电网仿真器配置在不同遍期间被获取),复相相互之间被调整,使得全部集合在特定频率下具有等效相。这可改进转换器戴维南电压源和转换器戴维南阻抗的确定。特别是,形成被输入到简化耦合系统模型中的一对的测量值的两个集合的复相可按照这种方式来调整。

本发明的另外的方面涉及一种用于确定转换器系统的转换器戴维南等效模型的计算机程序,该计算机程序当在处理器上执行时适合于执行如上文和下文所述的方法。

例如,计算机程序可存储在电网仿真器系统的控制器中和/或在公共耦合点处连接到测量传感器的评估装置中。控制器和/或评估装置可包括具有存储器的处理器,其适合于执行计算机程序。

本发明的另外的方面涉及一种计算机可读介质,其中存储这种计算机程序。计算机可读介质可以是软盘、硬盘、USB(通用串行总线)存储装置、RAM(随机存取存储器)、ROM(只读存储器)、EPROM(电可擦可编程只读存储器)或FLASH存储器。计算机可读介质还可以是数据通信网络(例如因特网),该数据通信网络允许下载程序代码。通常,计算机可读介质可以是非暂时或暂时介质。

本发明的另外的方面涉及一种用于确定转换器系统的转换器戴维南等效模型的评估装置,其中评估装置适合于执行如上文和下文所述的方法。电网仿真器系统的控制器可以是这种评估装置。还有可能的是,利用电网仿真器系统所生成的测量值被存储和/或传送给另外的计算装置(例如PC)并且在那里被评估。另外,这个另外的计算装置可以是评估装置。

本发明的另外的方面涉及一种测试系统,该测试系统包括用于利用供应电压为转换器系统供电的电网仿真器系统以及评估装置,例如上文和下文所述。利用测试系统,可确定转换器戴维南等效模型,而无需另外的设备。

必须理解,如上文和下文所述的方法的特征可以是如上文和下文所述的计算机程序、计算机可读介质、评估装置和测试系统的特征,并且反之亦然。

本发明的这些方面及其他方面根据在下文所述的实施例将是显然的,并且参照在下文所述实施例说明。

附图说明

在下文中将参照附图中图示的示范实施例更详细地说明本发明的主题。

图1示意示出按照本发明的实施例的测试系统。

图2示出用于图1的测试系统的等效电路。

图3示出具有图1的转换器系统的戴维南等效模型的曲线的简图。

图4示出用于图1的测试系统的简化等效电路。

图5示出按照本发明的实施例的用于确定戴维南等效模型的流程图。

图6示出具有利用图5的方法所确定的戴维南等效模型的曲线的简图。

图7示出具有利用图5的方法所确定的另外的戴维南等效模型的曲线的简图。

附图中使用的参考符号及其含意在参考符号的列表中以概括形式列示。大体上,在附图中,相同部件提供有相同参考符号。

具体实施方式

图1示出测试系统10,该测试系统10包括转换器系统12和电网仿真器系统14。转换器系统12包括电气驱动器16,该电气驱动器16由转换器18和旋转电机20来组成。电气驱动器16在机械上连接到原动机22(例如涡轮)。波动功率可在原动机22与电气驱动器16之间来交换。但是,转换器系统12还包括其他类型的转换器,和/或可用于其他目的,例如互连两个电气网或者通过光伏系统来馈电。

由于测试原因,转换器系统12以及特别是电气驱动器16由电网仿真器系统14利用AC供应电压

电网仿真器系统14本身由电气网26来供电。电网仿真器系统14包括连接到电网26的可选输入变压器28、转换器30和输出变压器32,它们全部串联连接在电气网26与公共耦合点24之间。公共耦合点24经由过滤器34来接地,该过滤器34可包括电容器36和/或电感器38。

转换器30可包括AC-DC转换器40、DC链路42和DC-AC转换器44。转换器30可具有两电平、三电平或多电平类型。可利用控制器46来控制转换器30,该控制器46可适合于生成用于转换器30的半导体开关的开关信号。评估装置48可接收在公共耦合点24处的供应电压

图2示出用于测试系统10的等效电路50。在这里,左边对应于电网仿真器系统14,所述电网仿真器14通过串行元件

右边对应于转换器系统12,所述转换器系统12利用戴维南等效模型52(该戴维南等效模型52由戴维南电压源

要注意,全部这些参数都在频域中相对于频率

图3示出具有对典型转换器系统12所预计的转换器戴维南电压源

通常,戴维南电压源

戴维南电压源

而且,戴维南阻抗

由于电网仿真器系统14的硬件为已知,所以图2的参数

在这里,已经引入电网仿真器系统14的戴维南电压源

在公共耦合点24处的电压

傅立叶变换测量

除非被补偿,否则由电网仿真器系统14所引入的谐波通常将在未知戴维南等效参数

针对图5,描述一种方法,利用该方法可同时且准确地确定转换器戴维南电压源

在步骤S10中,确定在公共耦合点24处所测量的耦合点电压

对于步骤S14和S16,可需要测量值的若干集合,它们可相对于电网仿真器系统14的不同操作点来生成。因此,在步骤S12中,可改变电网仿真器系统14,使得它操作在不同操作点处。这可由评估装置48自动进行,评估装置48例如可指示转换器30改变其调制方案。还可能的是,通过交换组件(例如36、38)手动修改电网仿真器系统14。

电网仿真器系统14对此可包括可调整电气组件(例如转换器30和/或过滤器34),使得当调整电气组件30、34时,改变电网仿真器参数

在电网仿真器系统14的调整之后,该方法可在步骤S10中继续进行,并且可生成测量值的另外的集合。可能的是,在电气组件被调整成不同设定的情况下确定耦合点电压和耦合点电流的测量值的多个集合。

在步骤S14和S16(它们两者或者仅其中之一可被执行)这,根据测量值,确定至少一个转换器戴维南阻抗

在步骤S14中,利用耦合系统的模型58来确定这些量,该模型58包括电网仿真器系统14的参数。在步骤S16中,利用简化模型60来确定这些量,其中已经消除电网仿真器系统14的参数的至少一些。

通常,耦合系统模型58和简化耦合系统60包括对转换器系统12和电网仿真器系统14进行建模的等式,并且根据所述等式,计算转换器戴维南阻抗

为了得出耦合系统模型58,基于图4中的简化等效电路56,基尔霍夫定律给出下列关系:

根据这些等式,能够求出未知量的表达式:

因此,可从测量值

由于电网仿真器系统14可以是实验室设备的组成部分,所以它可使用高质量组件来制造,使得其参数可被认为几乎完全已知。对于电网仿真器系统14的情况,例如利用如图1中所示的LC过滤器34,电网仿真器系统14的戴维南阻抗

此外,转换器电压

这可对噪声是敏感的,以及虽然它可提供令人满意的结果,但是使用测量值的多个集合来估计未知参数

总之,在耦合系统模型58中,可利用电网戴维南等效模型54(该电网戴维南等效模型54包括电网戴维南阻抗

在步骤S16中,利用简化耦合系统模型60来确定未知量

当假定转换器戴维南等效模型52的参数

下标1和2表示两个不同测量遍,即,测量值的不同集合和/或两个不同操作点。在这里,过滤器电路中的变化将暗示

基于等式的这个扩展集合,能够求出用于未知量

注意,与步骤S14的情况相比,电网仿真器戴维南参数在等式中没有出现,并且因此当那些参数不是完全已知时,也可使用这种方式,这可能是优势。用于

总之,通过下列方式来计算简化耦合系统模型60:利用具有电网仿真器参数的第一集合的电网元件确定第一耦合系统模型,并且利用具有电网仿真器参数的第二集合的电网元件确定第二耦合系统模型;以及通过将第二耦合系统模型的等式代入到第一耦合系统模型的等式中来以分析的方式消除电网仿真器参数。然后在电气组件被调整成不同设定情况下确定测量值的两个集合,它们被输入到简化系统模型60中。

如果进行数量为n的测量遍,则那些测量值的集合能够在

在步骤S14和S16之后,多个中间转换器戴维南阻抗

图6示出可如上所述的那样已经产生的中间转换器戴维南阻抗

在步骤S18中,中间转换器戴维南阻抗

统计评估可包括求平均、离群值消除和平滑。

可通过对

备选地或另外地,可通过从中间转换器戴维南阻抗

在最终步骤中,可平滑戴维南阻抗

虽然在附图和以上描述中详细图示和描述了本发明,但是这种图示和描述被认为是说明性或示范性而不是限制性的;本发明并不局限于所公开的实施例。根据研究附图、本公开和所附权利要求书,通过本领域熟练的并且实施要求保护的本发明的技术人员能够理解和实现对所公开的实施例的其他变更。在权利要求中,词语“包括”不排除其他元件或步骤,以及不定冠词“一”或“一个”不排除多个。单处理器或控制器或其他单元可实现权利要求中所记载的若干项的功能。在互不相同的从属权利要求中记载某些措施的纯粹事实并不指示这些措施的组合不能有利地使用。权利要求书中的任何参考符号不应当被理解为限制范围。

参考符号列表

10 测试系统

12 转换器系统

14 电网仿真器系统

16 电气驱动器

18 驱动转换器

20 旋转电机

22 原动机

24 公共耦合点

26 电气网

28 输入变压器

30 仿真器转换器

32 输出变压器

34 电气过滤器

36 电容器

38 电感器

40 AC-DC转换器

42 DC链路

44 DC-AC转换器

46 控制器

48 评估装置

50 等效电路

52 转换器戴维南等效模型

54 电网仿真器的等效戴维南模型

56 简化等效电路

58 耦合系统模型

60 简化耦合系统模型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号