首页> 中国专利> 一种多层复合介质暂态过程中的电场分布确定方法及系统

一种多层复合介质暂态过程中的电场分布确定方法及系统

摘要

本发明公开了一种多层复合介质暂态过程中的电场分布确定方法及系统,所述方法具体包括:分别测量多层复合介质的每一层介质的介电频谱和极化电流;对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路;对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路;根据第j层介质的第一等效支路和第二等效支路,建立第j层介质的单一介质等效模型;将每一层介质的单一介质等效模型进行串联连接,获得复合介质等效模型;基于复合介质等效模型获得多层复合介质的电场分布。本发明通过建立介质的等效模型,并结合电路分析方法即可快速算出多层介质暂态过程中的电场分布,避免了繁琐的数值方法,极大降低了计算量和计算时间。

著录项

  • 公开/公告号CN112698115A

    专利类型发明专利

  • 公开/公告日2021-04-23

    原文格式PDF

  • 申请/专利权人 华北电力大学;

    申请/专利号CN202011405249.2

  • 发明设计人 黄猛;吴延宇;宋翰林;吕玉珍;

    申请日2020-12-03

  • 分类号G01R29/14(20060101);

  • 代理机构11569 北京高沃律师事务所;

  • 代理人王爱涛

  • 地址 102206 北京市昌平区回龙观镇北农路2号

  • 入库时间 2023-06-19 10:43:23

说明书

技术领域

本发明涉及电气设备绝缘测试技术领域,特别涉及一种多层复合介质暂态过程中的电场分布确定方法及系统。

背景技术

为了绝缘配合、发挥不同介质的特性、设备需求等原因,实际中多层绝缘介质经常用到,例如变压器的油纸绝缘、电缆接头、穿墙套管等。对于绝缘安全而言,每层介质中的电场需要合理,否则可能造成设备放电,引发安全事故。

随着新能源大规模接入、电力电子化设备大量应用,设备上的暂态电压较多,当前对于多层介质电场的计算方法,通常交流电压下电场按介电常数计算,直流电压下按电阻率计算,冲击电压同样按介电常数计算,但不适用于一般变化缓慢的电压计算。其它暂态电压也没有通用的计算方法,一般是通过有限元仿真、电荷运动微观方程计算,过程复杂繁琐、耗时较长,且不能计算复杂结构,不适合电气设备绝缘结构电场分布计算。

如何提供一种快速的电气设备绝缘结构电场分布计算方法,成为一个亟待解决的技术问题。

发明内容

本发明的目的是提供一种多层复合介质暂态过程中的电场分布确定方法及系统,以提供一种快速的电气设备绝缘结构电场分布计算方法。

为实现上述目的,本发明提供了如下方案:

一种多层复合介质暂态过程中的电场分布确定方法,所述确定方法包括如下步骤:

分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻;所述介电频谱为:在不同频率的交流电压激励下的频域复介电常数;

对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容;所述第一等效支路为第一支路等效电阻和第一支路等效电容串联连接形成的支路;

对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容;所述第二等效支路为第二支路等效电阻和第二支路等效电容串联连接形成的支路;

根据第j层介质的极化电流的时间变化曲线确定从阶跃电压施加至极化电流稳定之间的时间作为第j层介质的极化电流时间;

判断第j层介质的极化电流时间是否满足公式t

若所述第一判断结果表示是,则将第j层介质的介质等效电阻和介质等效电容以及n个第一等效支路并联连接,形成第j层介质的单一介质等效模型;

若所述第一判断结果表示否,则将第j层介质的介质等效电阻和介质等效电容以及n个第一等效支路和m个第二等效支路并联连接,形成第j层介质的单一介质等效模型;

将每一层介质的单一介质等效模型进行串联连接,并将每一层介质的介质等效电阻、介质等效电容、第一支路等效电阻、第一支路等效电容、第二支路等效电阻和第二支路等效电容换算成介电常数和电导率参数,获得复合介质等效模型;

对复合介质等效模型施加暂态电压,计算得到复合介质等效模型输出的电场的分布,作为多层复合介质的电场分布。

可选的,所述分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻,具体包括:

测量每一层介质在不同频率的交流电压激励下的频域复介电常数;

测量每一层介质在阶跃直流电压激励下的极化电流。

可选的,所述对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容,具体包括:

根据所述介电频谱和电容随频率变化的关系函数

其中,C(ω)为频率ω下的复电容的测量值,ε(ω)表示频率ω下的复介电常数,S为第j层介质的横截面积,d为第j层介质的厚度;

令n的数值等于1;

根据不同频率下的电容的测量值,利用公式

其中,C

选取K个频率点,利用公式

其中,N

判断N个频率点的函数拟合误差值的平均值是否小于或等于1%,获得第二判断结果;

若所述第二判断结果表示否,则令n的数值增加1,返回步骤“根据不同频率下的电容的测量值,利用公式

若所述第二判断结果表示是,输出n个支路的拟合函数的每个第一等效支路的等效电阻和等效电容。

可选的,所述对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容,具体包括:

令h的数值等于1;

利用公式

其中,A

选取L个时间点,利用公式

其中,e

判断L个时间点的函数拟合误差值的平均值是否小于或等于1%,获得第三判断结果;

若所述第三判断结果表示否,则令n的数值增加1,返回步骤“利用公式

若所述第三判断结果表示是,则利用公式

其中,U

将τ

一种多层复合介质暂态过程中的电场分布确定系统,所述确定系统包括:

测量模块,用于分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻;所述介电频谱为:在不同频率的交流电压激励下的频域复介电常数;

介电频谱拟合模块,用于对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容;所述第一等效支路为第一支路等效电阻和第一支路等效电容串联连接形成的支路;

极化电流拟合模块,用于对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容;所述第二等效支路为第二支路等效电阻和第二支路等效电容串联连接形成的支路;

极化电流时间确定模块,用于根据第j层介质的极化电流的时间变化曲线确定从阶跃电压施加至极化电流稳定之间的时间作为第j层介质的极化电流时间;

第一判断模块,用于判断第j层介质的极化电流时间是否满足公式t

第一单一介质等效模型建立模块,用于若所述第一判断结果表示是,则将第j层介质的介质等效电阻和介质等效电容以及n个第一等效支路并联连接,形成第j层介质的单一介质等效模型;

第二单一介质等效模型建立模块,用于若所述第一判断结果表示否,则将第j层介质的介质等效电阻和介质等效电容以及n个第一等效支路和m个第二等效支路并联连接,形成第j层介质的单一介质等效模型;

复合介质等效模型建立模块,用于将每一层介质的单一介质等效模型进行串联连接,并将每一层介质的介质等效电阻、介质等效电容、第一支路等效电阻、第一支路等效电容、第二支路等效电阻和第二支路等效电容换算成介电常数和电导率参数,获得复合介质等效模型;

电场分布计算模块,用于对复合介质等效模型施加暂态电压,计算得到复合介质等效模型输出的电场的分布,作为多层复合介质的电场分布。

可选的,所述测量模块,具体包括:

频域复介电常数测量子模块,用于测量每一层介质在不同频率的交流电压激励下的频域复介电常数;

极化电流测量子模块,用于测量每一层介质在阶跃直流电压激励下的极化电流。

可选的,所述介电频谱拟合模块,具体包括:

电容测量值确定子模块,用于根据所述介电频谱和电容随频率变化的关系函数

其中,C(ω)为频率ω下的复电容的测量值,ε(ω)表示频率ω下的复介电常数,S为第j层介质的横截面积,d为第j层介质的厚度;

第一初始化子模块,用于令n的数值等于1;

函数拟合子模块,用于根据不同频率下的电容的测量值,利用公式

其中,C

函数拟合误差值计算子模块,用于选取K个频率点,利用公式

其中,N

第二判断子模块,用于判断N个频率点的函数拟合误差值的平均值是否小于或等于1%,获得第二判断结果;

第一返回子模块,用于若所述第二判断结果表示否,则令n的数值增加1,返回步骤“根据不同频率下的电容的测量值,利用公式

第一拟合结果输出子模块,用于若所述第二判断结果表示是,输出n个支路的拟合函数的每个第一等效支路的等效电阻和等效电容。

可选的,所述极化电流拟合模块,具体包括:

第二初始化子模块,用于令h的数值等于1;

第二函数拟合子模块,用于利用公式

其中,A

第二函数拟合误差计算子模块,用于选取L个时间点,利用公式

其中,e

第三判断子模块,用于判断L个时间点的函数拟合误差值的平均值是否小于或等于1%,获得第三判断结果;

第二返回子模块,用于若所述第三判断结果表示否,则令h的数值增加1,返回步骤“利用公式

第二拟合结果输出子模块,用于若所述第三判断结果表示是,则利用公式

其中,U

第二等效支路建立子模块,用于将τ

根据本发明提供的具体实施例,本发明公开了以下技术效果:

本发明公开了一种多层复合介质暂态过程中的电场分布确定方法,所述确定方法包括如下步骤:分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻;获得第j层介质的介质等效电阻和介质等效电容,对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容;所述第一等效支路为第一支路等效电阻和第一支路等效电容串联连接形成的支路;对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容;所述第二等效支路为第二支路等效电阻和第二支路等效电容串联连接形成的支路;根据第j层介质的极化电流的时间变化曲线确定从阶跃电压施加至极化电流稳定之间的时间作为第j层介质的极化电流时间;判断第j层介质的极化电流时间是否满足公式t

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明提供的一种多层复合介质暂态过程中的电场分布确定方法的流程图;

图2为本发明具体实施例提供的油纸绝缘结构示意图;

图3为本发明具体实施例提供的变压器油的介电频谱;

图4为本发明具体实施例提供的油浸绝缘纸的介电频谱;

图5为本发明具体实施例提供的变压器油的极化电流曲线;

图6为本发明具体实施例提供的油浸绝缘纸的极化电流曲线;

图7为本发明具体实施例提供的第一单一介质等效模型图;

图8为本发明具体实施例提供的第二单一介质等效模型图;

图9为本发明具体实施例提供的复合介质等效模型的仿真图。

具体实施方式

本发明的目的是提供一种多层复合介质暂态过程中的电场分布确定方法及系统,以提供一种快速的电气设备绝缘结构电场分布计算方法。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对发明作进一步详细的说明。

如图1所示,本发明提供一种多层复合介质暂态过程中的电场分布确定方法,所述确定方法包括如下步骤:

步骤101,分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻;所述介电频谱为:在不同频率的交流电压激励下的频域复介电常数。

步骤101所述分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻,具体包括:测量每一层介质在不同频率的交流电压激励下的频域复介电常数;测量每一层介质在阶跃直流电压激励下的极化电流。通过测量的结果就可以获得介质本身的介质等效电阻和介质等效电容,电容是50Hz下的介电常数算来的,电阻是用极化电流测量的阶跃电压比稳态电流。

由于介电频谱对于太低的电流频率下的测量结果不准确,频率为0时无法测量;同时,在极化电流的测量过程中,初始时刻的极化电流测量难度较大,采样率不高,导致在高频段的数据难以采集。介电频谱更能反映介质在高频电流下的信息,而极化电流在低频下的测量效果更好,因此采用介电频谱和极化电流相结合的测量手段。

介电频谱测量:

取厚度为d,横截面积为S的第j层介质,对两端施加频率为ω(包括从低频f

极化电流测量:

取厚度为d,横截面积为S的第j层介质,在其两端施加阶跃直流电压,用电流表测量在阶跃电压作用下的极化电流。测量开始时,先向被测试品施加电压为Uo的阶跃激励,直至电流持续稳定不变,记录整个过程流过介质的极化电流为i

步骤102,对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容;所述第一等效支路为第一支路等效电阻和第一支路等效电容串联连接形成的支路;

步骤102所述对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容,具体包括:根据所述介电频谱和电容随频率变化的关系函数

步骤103,对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容;所述第二等效支路为第二支路等效电阻和第二支路等效电容串联连接形成的支路。

步骤103所述对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容,具体包括:令h的数值等于1;利用公式

步骤104,根据第j层介质的极化电流的时间变化曲线确定从阶跃电压施加至极化电流稳定之间的时间作为第j层介质的极化电流时间;

步骤105,判断第j层介质的极化电流时间是否满足公式t

步骤106,若所述第一判断结果表示是,则将第j层介质的介质等效电阻和介质等效电容(几何电容)以及n个第一等效支路并联连接,形成第j层介质的单一介质等效模型;

步骤107,若所述第一判断结果表示否,则将第j层介质的介质等效电阻和介质等效电容(几何电容)以及n个第一等效支路和m个第二等效支路并联连接,形成第j层介质的单一介质等效模型;

步骤108,将每一层介质的单一介质等效模型进行串联连接,并将每一层介质的介质等效电阻、介质等效电容、第一支路等效电阻、第一支路等效电容、第二支路等效电阻和第二支路等效电容换算成介电常数和电导率参数,获得复合介质等效模型;

步骤109,对复合介质等效模型施加暂态电压,计算得到复合介质等效模型输出的电场的分布,作为多层复合介质的电场分布。

本发明还提供一种多层复合介质暂态过程中的电场分布确定系统,所述确定系统包括:

测量模块,用于分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻;所述介电频谱为:在不同频率的交流电压激励下的频域复介电常数。

所述测量模块,具体包括:频域复介电常数测量子模块,用于测量每一层介质在不同频率的交流电压激励下的频域复介电常数;极化电流测量子模块,用于测量每一层介质在阶跃直流电压激励下的极化电流。

介电频谱拟合模块,用于对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容;所述第一等效支路为第一支路等效电阻和第一支路等效电容串联连接形成的支路。

所述介电频谱拟合模块,具体包括:电容测量值确定子模块,用于根据所述介电频谱和电容随频率变化的关系函数

极化电流拟合模块,用于对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容;所述第二等效支路为第二支路等效电阻和第二支路等效电容串联连接形成的支路。

所述极化电流拟合模块,具体包括:第二初始化子模块,用于令h的数值等于1;第二函数拟合子模块,用于利用公式

极化电流时间确定模块,用于根据第j层介质的极化电流的时间变化曲线确定从阶跃电压施加至极化电流稳定之间的时间作为第j层介质的极化电流时间;

第一判断模块,用于判断第j层介质的极化电流时间是否满足公式t

第一单一介质等效模型建立模块,用于若所述第一判断结果表示是,则将第j层介质的介质等效电阻和介质等效电容以及n个第一等效支路并联连接,形成第j层介质的单一介质等效模型;

第二单一介质等效模型建立模块,用于若所述第一判断结果表示否,则将第j层介质的介质等效电阻和介质等效电容以及n个第一等效支路和m个第二等效支路并联连接,形成第j层介质的单一介质等效模型;

复合介质等效模型建立模块,用于将每一层介质的单一介质等效模型进行串联连接,并将每一层介质的介质等效电阻、介质等效电容、第一支路等效电阻、第一支路等效电容、第二支路等效电阻和第二支路等效电容换算成介电常数和电导率参数,获得复合介质等效模型;

电场分布计算模块,用于对复合介质等效模型施加暂态电压,计算得到复合介质等效模型输出的电场的分布,作为多层复合介质的电场分布。

为了说明本发明的确定方法及系统的实现方式和技术效果,本发明还提供了一个具体的实施例。

如图2所示,以油纸绝缘结构,一层油一层纸的情况为例,求油和油浸纸的暂态过程中的电场分布。

具体步骤如下:

步骤1:取厚度分别为do、dp,横截面积分别为So,Sp的变压器油和油浸纸,分别测量变压器油和油浸纸从低频到高频下的介电频谱和极化电流:

由于介电频谱对于太低的电流频率下的测量结果不准确,频率为0时无法测量;同时,在极化电流的测量过程中,初始时刻的极化电流测量难度较大,采样率不高,导致在高频段的数据难以采集。介电频谱更能反映介质在高频电流下的信息,而极化电流在低频下的测量效果更好,因此采用介电频谱和极化电流相结合的测量手段。

介电频谱测量:

分别对两种介质两端施加频率为ω(包括从低频f

极化电流测量:

分别在厚度分别为do、dp,横截面积分别为So,Sp的变压器油和油浸纸两种介质两端施加阶跃直流电压,用电流表测量在阶跃电压作用下的极化电流。测量开始时,先向被测试品施加电压为Uo的阶跃激励,直至电流持续稳定不变,记录整个过程流过介质的极化电流为i

步骤2:对步骤1中测量的介电频谱、极化电流进行拟合,得到拟合参数:

(1)变压器油和绝缘纸介电频谱拟合

拟合公式:

C(ω)为介质在不同频率下的复电容,ε(ω)为不同频率下的复介电常数,ω为频率,S为被测试样的横截面积,d为被测试样的厚度,C’(ω)为不同频率下的复电容的实部,C

拟合方法:

测量介电频谱的过程中得到介电常数随频率的变化关系ε(ω),通过

油和纸的拟合方法相同。

(2)变压器油和绝缘纸极化电流拟合

拟合公式:

τ

i

拟合过程:

测量极化电流的过程中得到极化电流随时间的变化关系id(t),设置最大允许误差1%,令n=1,对id(t)-I

油和纸的拟合方法相同。

步骤3:根据步骤2极化电流和介电频谱拟合的电容电阻参数建立单一介质的等值参数模型。

判断极化时间t

步骤4:由步骤3得到的单一介质模型串联连接得到复合介质等效模型。

计算电容电阻参数的电阻率和介电常数:

将步骤3得到的每一层介质等效模型串联连接,再将电容电阻参数通过公式

油和纸的等效介电常数和电导率参数如表1和表2所示,其中,σ

表1变压器油的等效电导率和等效介电常数参数表

表2油浸纸的等效电导率和等效介电常数参数表

因为介质内部任意一点电场和电流密度的关系,再结合电流连续性方程和外施电压,即可求出多层介质的电场分布。由于实施例中油和油浸纸采用平行结构,且在复合介质两端施加电压,根据实际介质的横截面积和厚度,通过

步骤4输出结果:复合介质的等效模型。应用在步骤5使用电路分析软件求暂态过程的电场分布。

步骤5:对步骤4得到的复合介质的等效模型求解。

将以如图9所示的电路在电路分析软件中建模,运用电路分析软件求解复合介质在暂态过程中的电场分布。

以mulitisim软件为例

1.新建工程文件

2.根据步骤4得到的电路模型以及电容电阻参数,在软件中加入相应的元器件以及设置相应的电容电阻值,如图9所示。

3.电路两端根据实际需要施加电压,这里以2kV的直流电压为例,给电路加上开关,并添加虚拟示波器元件,分别在表示绝缘油和油浸纸的模型两端连接上示波器。

4.点击运行选项,合上开关,根据电流连续可计算出油和纸上的电压,进而根据电场等于电压除以厚度得到电场分布。

根据本发明提供的具体实施例,本发明公开了以下技术效果:

本发明公开了一种多层复合介质暂态过程中的电场分布确定方法,所述确定方法包括如下步骤:分别测量多层复合介质的每一层介质的介电频谱和极化电流,根据介电频谱的工频复电容实部得到每一层介质的介质等效电容,根据极化电流稳态值得到每一层介质的介质等效电阻;获得第j层介质的介质等效电阻和介质等效电容;对第j层介质的介电频谱进行拟合,获得第j层介质的n个第一等效支路的第一支路等效电阻和第一支路等效电容;所述第一等效支路为第一支路等效电阻和第一支路等效电容串联连接形成的支路;对第j层介质的极化电流进行拟合,获得第j层介质的m个第二等效支路的第二支路等效电阻和第二支路等效电容;所述第二等效支路为第二支路等效电阻和第二支路等效电容串联连接形成的支路;根据第j层介质的极化电流的时间变化曲线确定从阶跃电压施加至极化电流稳定之间的时间作为第j层介质的极化电流时间;判断第j层介质的极化电流时间是否满足公式t

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

本文中应用了具体个例对发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号