首页> 中国专利> 一种基于监督Seq2Seq模型的脉搏信号噪声检测方法

一种基于监督Seq2Seq模型的脉搏信号噪声检测方法

摘要

本发明公开了一种基于监督Seq2Seq模型的脉搏信号噪声检测方法,本发明先对目标信号进行经验模态分解,然后使用训练好的Seq2Seq模型得到该信号的特征表示,最后使用最近邻分类器,将其特征表示与训练集中已知类别信号的特征表示进行对比,进而确定该信号是否为噪声信号。本发明利用经验模态分解方法自适应提取输入信号的时频特征,将脉搏信号与噪声信号差别较大的时频信息进行突出;此外本发明还提取输入信号的多尺度特征,自动挖掘信号的具有区分力的深度特征表示,利用关系正则化引导脉搏信号的特征表示彼此接近,增加特征表示的辨别力,可以有效提高噪声信号检测精度,且不需要手动设置阈值。

著录项

  • 公开/公告号CN112674734A

    专利类型发明专利

  • 公开/公告日2021-04-20

    原文格式PDF

  • 申请/专利权人 电子科技大学;

    申请/专利号CN202011596336.0

  • 发明设计人 肖迪尹;李巧勤;刘勇国;杨尚明;

    申请日2020-12-29

  • 分类号A61B5/02(20060101);A61B5/00(20060101);G06N3/04(20060101);

  • 代理机构11870 北京正华智诚专利代理事务所(普通合伙);

  • 代理人李林合

  • 地址 611731 四川省成都市高新区(西区)西源大道2006号

  • 入库时间 2023-06-19 10:43:23

说明书

技术领域

本发明涉及噪音检测领域,具体涉及一种基于监督Seq2Seq模型的脉搏信号噪声检测方法。

背景技术

利用计算机技术对脉搏信号进行客观化分析以辅助中医临床诊断,对推动中医现代化发展具有重要意义。而脉搏信号采集过程会不可避免的受到饱和、伪迹等噪声信号干扰。脉搏信号的饱和是指信号的最大幅值超过设备所能表示的最大值,使得信号的尖端被削平;脉搏信号的伪迹是指脉搏信号中出现的无规律信号段。这两类噪声信号严重影响了脉搏信号分析的准确性,如何从脉搏信号中检测并筛选出噪声信号对后续的脉搏信号分析非常关键。

目前关于脉搏信号噪声检测的方法主要包括:第一,基于片段选择的方法,对采集到的脉搏信号进行筛选,将含有饱和或者伪迹等噪声片段的脉搏信号直接丢弃。第二,基于盲源分离的方法,对采集到的脉搏信号进行独立源成分提取,通过对独立源成分进一步分析识别噪声信号。第三,基于频率分析的方法,对采集到的脉搏信号进行频域和时频域分析,通过阈值法判断信号的频域是否属于正常的脉搏信号范围内。

上述方法为脉搏信号中的噪声检测研究奠定了基础,但是存在如下缺点:第一,需要针对不同的噪声类型单独设计检测算法,对不同的噪声类型分别进行检测,检测过程繁琐。第二,检测效果受算法阈值影响较大,上述方法需要精选设置检测阈值。第三,受限于通过观察噪声信号的具体特征设计算法,无法发现潜在的噪声信号。

发明内容

针对现有技术中的上述不足,本发明提供的一种基于监督Seq2Seq模型的脉搏信号噪声检测方法能够同时完成伪迹与饱和的自动检测,且不需要设置阈值,还可以发现其他潜在噪声信号。

为了达到上述发明目的,本发明采用的技术方案为:

提供一种基于监督Seq2Seq模型的脉搏信号噪声检测方法,其包括以下步骤:

S1、对已知标签信号进行时频分析,获取已知标签信号对应的本征模态分量和剩余信号,将已知标签信号表示为由其对应的本征模态分量和剩余信号构成的矩阵形式;

S2、采用Seq2Seq模型的编码器对矩阵形式的已知标签信号进行编码,得到对应的隐藏状态;

S3、采用Seq2Seq模型的解码器对隐藏状态进行解码重构,获取已知标签信号的特征表示;

S4、对隐藏状态进行全局平均操作,得到已知标签信号中每个信号的潜在特征表示;

S5、根据已知标签信号的特征表示获取Seq2Seq模型的重构损失,根据已知标签信号中每个信号的潜在特征表示获取Seq2Seq模型的关系正则化损失;

S6、对Seq2Seq模型的关系正则化损失添加权重系数,将Seq2Seq模型的重构损失与添加了权重系数的Seq2Seq模型的关系正则化损失之和作为Seq2Seq模型的损失函数;

S7、以Seq2Seq模型的损失函数最小为目标,采用随机梯度下降方法对Seq2Seq模型进行训练,得到训练后的Seq2Seq模型;

S8、采用与步骤S1-S4相同的方法获取目标信号中每个信号对应的潜在特征表示;

S9、通过最近邻分类器将目标信号中每个信号对应的潜在特征表示与已知类别信号的特征表示进行对比,确定目标信号是否为噪声信号。

进一步地,步骤S1包括以下子步骤:

S1-1、采用符号x=(x(1),x(2),...,x(t),...,x(T))表示已知标签信号,构建初始待分解信号x'=(x'(1),x'(2),...,x'(t),...,x'(T)),初始待分解信号中在时刻t的值x'(t)等于已知标签信号x在时刻t的值x(t);其中T为已知标签信号的长度;

S1-2、搜索当前待分解信号中所有局部最大值点和局部最小值点;其中局部最大值点的个数为M,局部最小值点的个数为N;

S1-3、使用三次样条函数对局部最大值点序列进行插值,得到t时刻对应的上包络u(t);使用三次样条函数对局部最小值点序列进行插值,得到t时刻对应的下包络l(t);

S1-4、根据公式:

获取t时刻上包络与下包络的均值m(t);

S1-5、根据公式:

r(t)=x'(t)-m(t)

将当前待分解信号中t时刻的值减去t时刻的均值m(t),得到剩余信号r(t);

S1-6、判断当前剩余信号r(t)在整个数据序列内极值点的个数和过零点的数目差是否小于等于1,若是则进入步骤S1-7,否则将当前待分解信号中的t时刻的值替换为当前剩余信号r(t)的值并返回步骤S1-2;

S1-7、判断当前剩余信号r(t)是否在任意时间点下包络均值的值均为0,若是则进入步骤S1-8,否则将当前待分解信号中t时刻的值替换为当前剩余信号r(t)的值并返回步骤S1-2;

S1-8、将当前剩余信号r(t)作为第k个本征模态分量imf

x”(t)=x'(t)-imf

将当前待分解信号中t时刻的值x'(t)减去imf

S1-9、判断信号x”是否为单调信号,若是则进入步骤S1-10,否则将当前待分解信号中t时刻的值替换为在t时刻新的信号x”(t),并返回步骤S1-2;

S1-10、将与已知标签信号对应的时间长度为T的新信号x”表示为如下矩阵形式:

其中K为新信号x”中本征模态分量的数量;X(t)为矩阵X的第t列。

进一步地,步骤S2中Seq2Seq模型的编码器包括Dilated RNN模型,Dilated RNN模型包含L个依次堆叠的隐藏层,每个隐藏层编码输入信号的一个尺度信息,第l层隐藏层的输出为:

进一步地,步骤S3中Seq2Seq模型的解码器包括基于GRU的循环神经网络,解码器对t时刻信号的解码输出为:

进一步地,步骤S5中根据已知标签信号的特征表示获取Seq2Seq模型的重构损失的具体方法为:

根据公式:

获取Seq2Seq模型的重构损失L

进一步地,步骤S5中根据已知标签信号中每个信号的潜在特征表示获取Seq2Seq模型的关系正则化损失的具体方法为:

根据公式:

获取Seq2Seq模型的关系正则化损失L

本发明的有益效果为:本发明提出一种通用的脉搏信号噪声检测方法,能够自动从输入信号中识别出无用的伪迹、饱和等噪声信号,且不需要手动设置阈值;本发明利用经验模态分解方法自适应提取输入信号的时频特征,将脉搏信号与噪声信号差别较大的时频信息进行突出;此外本发明还提取输入信号的多尺度特征,自动挖掘信号的具有区分力的深度特征表示,利用关系正则化引导脉搏信号的特征表示彼此接近,增加特征表示的辨别力,可以有效提高噪声信号检测精度。

附图说明

图1为本发明的流程示意图;

图2为本发明Seq2Seq模型的结构示意图;

图3为本发明中关系正则化示意图。

具体实施方式

下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

如图1和图2所示,该基于监督Seq2Seq模型的脉搏信号噪声检测方法包括以下步骤:

S1、对已知标签信号进行时频分析,获取已知标签信号对应的本征模态分量和剩余信号,将已知标签信号表示为由其对应的本征模态分量和剩余信号构成的矩阵形式;

S2、采用Seq2Seq模型的编码器对矩阵形式的已知标签信号进行编码,得到对应的隐藏状态;

S3、采用Seq2Seq模型的解码器对隐藏状态进行解码重构,获取已知标签信号的特征表示;

S4、对隐藏状态进行全局平均操作,得到已知标签信号中每个信号的潜在特征表示;

S5、根据已知标签信号的特征表示获取Seq2Seq模型的重构损失,根据已知标签信号中每个信号的潜在特征表示获取Seq2Seq模型的关系正则化损失;

S6、对Seq2Seq模型的关系正则化损失添加权重系数,将Seq2Seq模型的重构损失与添加了权重系数的Seq2Seq模型的关系正则化损失之和作为Seq2Seq模型的损失函数;

S7、以Seq2Seq模型的损失函数最小为目标,采用随机梯度下降方法对Seq2Seq模型进行训练,得到训练后的Seq2Seq模型;

S8、采用与步骤S1-S4相同的方法获取目标信号中每个信号对应的潜在特征表示;

S9、通过最近邻分类器将目标信号中每个信号对应的潜在特征表示与已知类别信号的特征表示进行对比,确定目标信号是否为噪声信号。

步骤S1包括以下子步骤:

S1-1、采用符号x=(x(1),x(2),...,x(t),...,x(T))表示已知标签信号,构建初始待分解信号x'=(x'(1),x'(2),...,x'(t),...,x'(T)),初始待分解信号中在时刻t的值x'(t)等于已知标签信号x在时刻t的值x(t);其中T为已知标签信号的长度;

S1-2、搜索当前待分解信号中所有局部最大值点和局部最小值点;其中局部最大值点的个数为M,局部最小值点的个数为N;

S1-3、使用三次样条函数对局部最大值点序列进行插值,得到t时刻对应的上包络u(t);使用三次样条函数对局部最小值点序列进行插值,得到t时刻对应的下包络l(t);

S1-4、根据公式:

获取t时刻上包络与下包络的均值m(t);

S1-5、根据公式:

r(t)=x'(t)-m(t)

将当前待分解信号中t时刻的值减去t时刻的均值m(t),得到剩余信号r(t);

S1-6、判断当前剩余信号r(t)在整个数据序列内极值点的个数和过零点的数目差是否小于等于1,若是则进入步骤S1-7,否则将当前待分解信号中的t时刻的值替换为当前剩余信号r(t)的值并返回步骤S1-2;

S1-7、判断当前剩余信号r(t)是否在任意时间点下包络均值的值均为0,若是则进入步骤S1-8,否则将当前待分解信号中t时刻的值替换为当前剩余信号r(t)的值并返回步骤S1-2;

S1-8、将当前剩余信号r(t)作为第k个本征模态分量imf

x”(t)=x'(t)-imf

将当前待分解信号中t时刻的值x'(t)减去imf

S1-9、判断信号x”是否为单调信号,若是则进入步骤S1-10,否则将当前待分解信号中t时刻的值替换为在t时刻新的信号x”(t),并返回步骤S1-2;

S1-10、将与已知标签信号对应的时间长度为T的新信号x”表示为如下矩阵形式:

其中K为新信号x”中本征模态分量的数量;X(t)为矩阵X的第t列。

如图2所示,步骤S2中Seq2Seq模型的编码器包括Dilated RNN模型,Dilated RNN模型包含L个依次堆叠的隐藏层,每个隐藏层编码输入信号的一个尺度信息,第l层隐藏层的输出为:

步骤S3中Seq2Seq模型的解码器包括基于GRU的循环神经网络,解码器对t时刻信号的解码输出为:

步骤S5中根据已知标签信号的特征表示获取Seq2Seq模型的重构损失的具体方法为:根据公式:

获取Seq2Seq模型的重构损失L

步骤S5中根据已知标签信号中每个信号的潜在特征表示获取Seq2Seq模型的关系正则化损失的具体方法为:根据公式:

获取Seq2Seq模型的关系正则化损失L

在本发明的一个实施例中,关系正则化损失有助于增加信号潜在特征表示的辨别力,引导脉搏信号的特征表示彼此之间距离接近,而噪声信号与脉搏信号的特征表示相互远离。如图3所示,脉搏信号的潜在表示为黑色实心圆,而其他空心图形为噪声信号,不同的形状表示不同的噪声类型。引入关系正则化后,可以通过测试信号与正常脉搏信号的距离判断该信号是否出现异常模式,从而发现一些未知类型的噪声信号。

综上所述,本发明先对目标信号进行经验模态分解,然后使用训练好的Seq2Seq模型得到该信号的特征表示,最后使用最近邻分类器,将其特征表示与训练集中已知类别信号的特征表示进行对比,进而确定该信号是否为噪声信号。本方法能够自动从输入信号中识别出无用的伪迹、饱和等噪声信号,且不需要手动设置阈值;本发明利用经验模态分解方法自适应提取输入信号的时频特征,将脉搏信号与噪声信号差别较大的时频信息进行突出;此外本发明还提取输入信号的多尺度特征,自动挖掘信号的具有区分力的深度特征表示,利用关系正则化引导脉搏信号的特征表示彼此接近,增加特征表示的辨别力,可以有效提高噪声信号检测精度。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号