首页> 中国专利> 基于两个三坐标定位器的维型定位位姿仿真匹配方法

基于两个三坐标定位器的维型定位位姿仿真匹配方法

摘要

本发明公开了基于两个三坐标定位器的维型定位位姿仿真匹配方法,标定主动定位器与从动定位器的零点位置、主动承接位置、从动承接位置,然后将主动定位器等效为五轴机床模型,将从动定位器等效为三轴机床模型,通过解算零点位置与主动承接位置之间的平移位姿关系与旋转位姿关系,进而得到五轴机床模型的平移参数与旋转参数;通过解算零点位置与从动承接位置之间的平移位姿关系,进而得到三轴机床模型的平移参数;进而将维型定位工装的仿真移动转化为五轴机床模型的平移旋转以及三轴机床模型的平移,进而使得对维型定位工装的仿真环境与实际环境一致,并实现仿真环境中维型定位工装与定位器的自动匹配。

著录项

  • 公开/公告号CN112613130A

    专利类型发明专利

  • 公开/公告日2021-04-06

    原文格式PDF

  • 申请/专利权人 成都飞机工业(集团)有限责任公司;

    申请/专利号CN202110245619.9

  • 申请日2021-03-05

  • 分类号G06F30/15(20200101);G06F30/17(20200101);G06F30/20(20200101);

  • 代理机构51228 成都君合集专利代理事务所(普通合伙);

  • 代理人尹玉

  • 地址 610092 四川省成都市青羊区黄田坝纬一路88号

  • 入库时间 2023-06-19 10:29:05

说明书

技术领域

本发明属于飞机部件位姿调节仿真的技术领域,具体涉及基于两个三坐标定位器的维型定位位姿仿真匹配方法。

背景技术

近些年来,发展数字化装配的理念已经越来越深入人心。在飞机数字化装配过程中,要求相互连接的零件、组件和部件必须保持正确的位置和姿态,因此其支撑方式十分关键。考虑到飞机组件、部件的位姿调整需求,通常通过至少两台三坐标数控定位器组成的位姿调整单元来对其进行支撑。然而每架飞机上架的姿态不一致,导致实际定位器承接的位置都会发生变化,为了保障在后续自动制孔过程中所运行的数控加工程序的安全性,在仿真时要建立与实际制孔机床运行环境完全一样的仿真环境,确保仿真环境的真实性,因此每一架产品都要根据定位器与维型架的实际承接位置配置仿真环境,由于配置环境步骤复杂,并且需要配置位置的组件较多,因此,配置过程中容易出错且不利于仿真应用的推广。同时在实际环境中,维型定位工装的从动端能够伴随主动端的移动进行随动,但是在仿真软件中,维型定位工装的从动端并不能伴随主动端进行随动,这也给维型定位工装的仿真模拟带来了与实际环境不符的问题。

发明内容

本发明的目的在于提供一种基于两个三坐标定位器的维型定位位姿仿真匹配方法,在仿真环境中将驱动维型定位工装的主动端移动的主动定位器及主动球铰简化五轴机床模型,将维型定位工装的从动端的从动定位器及从动球铰简化为三轴机床模型,并通过解算维型定位工装初始的零点位置与最终的承接位置之间的位姿调节关系,进而通过位姿调节关系对五轴机床模型与三轴机床模型进行平移或旋转调节,最终使得位姿调节的仿真环境与实际环境一致,并实现仿真环境中维型定位工装与定位器的自动匹配。

本发明通过下述技术方案实现:

基于两个三坐标定位器的维型定位位姿仿真匹配方法,包括以下步骤:

步骤1、在三维建模软件中建立飞机坐标系,在飞机坐标系中建立维型定位模型,并在维型定位模型中建立主动定位器、从动定位器,然后在主动定位器与从动定位器之间建立维型定位工装;

步骤2、在飞机坐标系中标定主动定位器和从动定位器的零点位置,然后标定维型定位工装最终承接产品时主动定位器的主动承接位置和从动定位器的从动承接位置;

步骤3、在仿真软件中建立飞机坐标系,并在飞机坐标系中将主动定位器等效转化为五轴机床模型,将从动定位器等效转化为三轴机床模型;并将五轴机床模型与三轴机床模型放置在零点位置;

步骤4、通过仿真软件中的数控代码驱动五轴机床模型根据主动承接位置与零点位置之间的平移位姿关系与旋转位姿关系将五轴机床模型移动至主动承接位置;通过仿真软件中的数控代码驱动三轴机床模型根据从动承接位置与零点位置之间的平移位姿关系将三轴机床模型移动至从动承接位置,然后在主动承接位置与从动承接位置之间装配维型定位工装完成位姿仿真匹配。

基于两个定位器的维型定位机构由一个主动定位器、一个从动定位器、一个维型定位工装构成,维型定位工装包括与主动定位器活动连接的主动端以及与从动定位器活动连接的从动端。维型定位工装的主动端与从动端分别设置有主动球头与从动球头,主动球头与设置在主动定位器上的主动球窝活动连接,从动球头与设置在从动定位器上的从动球窝活动连接。为了简化运动机构,可将主动球头与主动球窝之间的活动连接结构转化为主动球铰链结构,将从动球头与从动球窝之间的活动连接结构转化为从动球铰链结构。实际调姿过程中,通过主动定位器带动维型定位工装绕着主动球铰链进行平移及转动,从动定位器带动维型定位工装绕着从动球铰链进行平移及转动,进而将维型定位工装调节至最终的承接位置。但是通过仿真软件进行实际仿真模拟过程中,主动球铰链在主动定位器的带动下进行平移及转动后,从动球铰链并不能伴随主动球铰链的运动进行伴随联动,即在仿真模拟过程中,从动球铰链的最终承接位置并不能如同实际环境中伴随主动球铰链的承接位置的确定而确定。因此,在仿真过程中,为了使得最终的位姿调节仿真环境与为姿调节实际环境一致,需要对仿真环境中的主动球铰链与从动球铰链的承接位置进行单独调节。

为了简化位姿调节过程,将维型定位工装的实际位姿调节运动转化为主动球铰链处的五轴移动模型与从动球铰链处的三轴移动模型,上述五轴移动模型是指主动球铰链沿着坐标系的三个坐标轴进行平移以及绕着两个坐标轴转动,上述三轴移动模型是指从动球铰链沿着坐标系的三个坐标轴进行平移。然后通过将主动球铰链与从动球铰链的零点位置作为输入,将主动球铰链与从动球铰链的承接位置作为输出,通过求解零点位置与承接位置之间的平移位姿关系与旋转位姿关系,通过平移位姿关系与旋转位姿关系对五轴机床模型进行相应平移与旋转,通过平移位姿关系对三轴机床模型进行相应平移,进而使得仿真环境与实际环境一致。

为了更好的实现本发明,进一步地,主动定位器等效转化为五轴机床模型的步骤包括:

步骤A1、在仿真软件中建立飞机坐标系O-XYZ,并根据步骤1中标定的零点位置设置主动机床,在主动机床上沿X轴方向移动设置X轴组件,在X轴组件上沿Y轴方向移动设置Y轴组件,在Y轴组件上沿Z轴方向移动设置Z轴组件;

步骤A2、在Z轴组件上以平行于Z轴的轴线为转轴转动设置C轴组件,在C轴组件上以平行于Y轴的轴线为转轴转动设置B轴组件。

为了更好的实现本发明,进一步地,将从动定位器等效转化为三轴机床模型的步骤为在仿真软件中建立飞机坐标系O-XYZ,并根据步骤1中标定的零点位置设置从动机床,在从动机床上沿X轴方向移动设置X轴组件,在X轴组件上沿Y轴方向移动设置Y轴组件,在Y轴组件上沿Z轴方向移动设置Z轴组件。

为了更好的实现本发明,进一步地,所述平移位姿关系包括五轴机床模型或三轴机床模型分别沿着X轴、Y轴、Z轴的平移参数;所述旋转位姿关系包括五轴机床模型沿着X轴和Y轴的旋转参数。

为了更好的实现本发明,进一步地,计算平移参数的步骤包括:

步骤B1、建立飞机坐标系O-XYZ,并根据步骤2中标定的零点位置得到五轴机床模型或三轴机床模型的零点坐标;

步骤B2、根据步骤2中标定的承接位置得到五轴机床模型或三轴机床模型的承接坐标;

步骤B3、根据零点坐标与承接坐标得到五轴机床模型或三轴机床模型分别沿着X轴、Y轴、Z轴平移的距离,即得到平移参数。

为了更好的实现本发明,进一步地,计算旋转参数的步骤包括:

步骤C1、建立飞机坐标系O-XYZ,并在零点位置标定五轴机床模型与维型定位工装连接的主动球铰零点坐标以及三轴机床模型与维型定位工装连接的从动球铰零点坐标;

步骤C2、在承接位置标定五轴机床模型与维型定位工装连接的主动球铰承接点坐标以及三轴机床模型与维型定位工装连接的从动球铰承接点坐标;

步骤C3、根据主动球铰零点坐标与从动球铰零点坐标得到零点球铰直线,根据主动球铰承接点坐标和从动球铰承接点坐标得到承接点球铰直线;

步骤C4、计算零点球铰直线与承接点球铰直线之间的夹角,即得到旋转参数。

为了更好的实现本发明,进一步地,计算零点球铰直线与承接点球铰直线之间的夹角包括以下步骤:

步骤D1、将零点球铰直线投影至XOY平面得到第一零点投影线并计算第一零点投影线与X轴之间的第一零点夹角;将承接点球铰直线投影至XOY平面得到第一承接点投影线并计算第一承接点投影线与X轴之间的第一承接点夹角;

步骤D2、计算第一零点夹角与第一承接点夹角之间的差值即为绕着Y轴旋转的转角;

步骤D3、将零点球铰直线投影至XOZ平面得到第二零点投影线并计算第二零点投影线与X轴之间的第二零点夹角;将承接点球铰直线投影至XOZ平面得到第二承接点投影线并计算第二承接点投影线与X轴之间的第二承接点夹角;

步骤D4、计算第二零点夹角与第二承接点夹角之间的差值即为绕着Z轴旋转的转角。

本发明与现有技术相比,具有以下优点及有益效果:

本发明通过建立维型定位模型,并将维型定位模型中的主动定位器与从动定位器移动到零点并直接标定得到主动定位器与从动定位器的零点位置;然后标定维型定位工装最终承接产品时主动定位器的主动承接位置和从动定位器的从动承接位置;然后将主动定位器等效转化为五轴机床模型,将从动定位器等效转化为三轴机床模型,解算零点位置与主动承接位置之间的平移位姿关系与旋转位姿关系,进而得到五轴机床模型从零点位置移动至主动承接位置的平移参数与旋转参数;解算零点位置与从动承接位置之间的平移位姿关系,进而得到三轴机床模型从零点位置移动至从动承接位置的平移参数,进而将维型定位工装的仿真移动转化为五轴机床模型的平移旋转与三轴机床模型的平移匹配实现,进而使得对维型定位工装的仿真环境与实际环境一致,并实现仿真环境中维型定位工装与定位器的自动匹配。

附图说明

图1为本发明的流程步骤示意图;

图2为五轴机床模型的示意图;

图3为飞机坐标系到承接坐标系的转换示意图;

图4为零点球铰直线与承接点球铰直线的投影示意图;

图5为绕Y轴的转角示意图;

图6为绕Z轴的转角示意图;

图7为维型定位模型结构示意图。

其中:1-X轴组件;2-Y轴组件;3-Z轴组件;4-C轴组件;5-B轴组件;01-主动定位器;02-从动定位器;03-维型定位工装。

具体实施方式

实施例1:

本实施例的一种基于两个三坐标定位器的维型定位位姿仿真匹配方法,如图1所示,包括以下步骤:

步骤1、建立飞机坐标系O-XYZ,并在飞机坐标系中建立维型定位模型,如图7所示,并在维型定位模型中建立主动定位器01、从动定位器02,然后在主动定位器01与从动定位器02之间建立维型定位工装03;

在实际环境中通过控制系统控制主动定位器01与从动定位器02,使得主动定位器01与从动定位器02均移动至零点,然后采用激光跟踪仪标定此时主动定位器01与从动定位器02在飞机坐标系下的零点位置。然后建立飞机坐标系,并根据实际环境下在飞机坐标系中标定的零点位置,建立零点位置的维型定位模型。

步骤2、在飞机坐标系中标定主动定位器01和从动定位器02的零点位置,然后标定维型定位工装03最终承接产品时主动定位器01的主动承接位置和从动定位器02的从动承接位置;

在实际环境中通过控制系统控制主动定位器01与从动定位器02,使得主动定位器01与从动定位器02移动至最终的承接位置,然后采用激光跟踪仪标定此时主动定位器01与从动定位器02在飞机坐标系下的承接位置,将主动定位器01沿X轴、Y轴、Z轴的移动距离记为(d

步骤3、在仿真软件中建立飞机坐标系O-XYZ,并在飞机坐标系中将主动定位器01等效转化为五轴机床模型,将从动定位器02等效转化为三轴机床模型;并将五轴机床模型与三轴机床模型放置在零点位置。五轴机床模型可沿着X轴、Y轴、Z轴进行平移,也可以绕着Y轴与Z轴转动;三轴机床模型可沿着X轴、Y轴、Z轴进行平移。

步骤4、通过仿真软件中的数控代码驱动五轴机床模型根据主动承接位置与零点位置之间的平移位姿关系与旋转位姿关系将五轴机床模型的主动端移动至主动承接位置;通过仿真软件中的数控代码驱动三轴机床模型根据从动承接位置与零点位置之间的平移位姿关系将三轴机床模型的从动端移动至从动承接位置,然后在主动承接位置与从动承接位置之间装配维型定位工装03完成位姿仿真匹配。

维型定位工装03的实际为姿转换关系如图2所示,通过在飞机坐标系O-XYZ中沿着X轴、Y轴、Z轴平移至中间坐标系O

维型定位工装03从飞机坐标系O-XYZ转化至承接坐标系O

其中:d

上述步骤2中记录主动定位器01的移动距离(d

维型定位工装03从飞机坐标系O

绕着Y轴旋转:

其中:

绕着Z轴旋转:

其中:

则维型定位工装03从飞机坐标系O-XYZ位姿调节至承接坐标系O

其中:(x

实施例2:

本实施例在实施例1的基础上做进一步优化,将主动定位器01等效转化为如图2所示的五轴机床模型的步骤包括:

步骤A1、在仿真软件中建立飞机坐标系O-XYZ,并根据步骤1中标定的零点位置设置主动机床,在主动机床上沿X轴方向移动设置X轴组件1,在X轴组件1上沿Y轴方向移动设置Y轴组件2,在Y轴组件2上沿Z轴方向移动设置Z轴组件3;

X轴组件1能够沿着X轴方向移动,实现仿真模拟主动定位器01沿X轴方向的平移;Y轴组件2能够沿着Y轴方向移动,实现仿真模拟主动定位器01沿Y轴方向的平移;Z轴组件3能够沿着Z轴方向移动,实现仿真模拟主动定位器01沿Z轴方向的平移。

步骤A2、在Z轴组件3上以平行于Z轴的轴线为转轴转动设置C轴组件4,在C轴组件4上以平行于Y轴的轴线为转轴转动设置B轴组件5。

C轴组件4能够绕着Z轴转动,实现仿真模拟主动定位器01绕着Z轴转动;B轴组件5能够绕着Y轴转动,实现仿真模拟主动定位器01绕着Y轴转动。

上述仿真软件可为VERICUT软件但不限于VERICUT软件。

本实施例的其他部分与实施例1相同,故不再赘述。

实施例3:

本实施例在上述实施例1或2的基础上做进一步优化,将从动定位器02等效转化为三轴机床模型的步骤为在仿真软件中建立飞机坐标系O-XYZ,并根据步骤1中标定的零点位置设置从动机床,在从动机床上沿X轴方向移动设置X轴组件1,在X轴组件1上沿Y轴方向移动设置Y轴组件2,在Y轴组件2上沿Z轴方向移动设置Z轴组件3。

X轴组件1能够沿着X轴方向移动,实现仿真模拟从动定位器02沿X轴方向的平移;Y轴组件2能够沿着Y轴方向移动,实现仿真模拟从动定位器02沿Y轴方向的平移;Z轴组件3能够沿着Z轴方向移动,实现仿真模拟从动定位器02沿Z轴方向的平移。

本实施例的其他部分与上述实施例1或2相同,故不再赘述。

实施例4:

本实施例在上述实施例1-3任一项的基础上做进一步优化,所述平移位姿关系包括五轴机床模型或三轴机床模型分别沿着X轴、Y轴、Z轴的平移参数;所述旋转位姿关系包括五轴机床模型沿着X轴和Y轴的旋转参数。

为了保证维型定位工装03能够稳定承接产品,因此不允许维型定位工装03沿着X轴转动,仅仅允许维型定位工装03沿X轴、Y轴、Z轴平移以及绕着Y轴、Z轴转动。

本实施例的其他部分与上述实施例1-3任一项相同,故不再赘述。

实施例5:

本实施例在上述实施例1-4任一项的基础上做进一步优化,计算平移参数的步骤包括:

步骤B1、建立飞机坐标系O-XYZ,并根据步骤2中标定的零点位置得到五轴机床模型或三轴机床模型的零点坐标(x

步骤B2、根据步骤2中标定的承接位置得到五轴机床模型或三轴机床模型的承接坐标(x

步骤B3、根据零点坐标与承接坐标得到五轴机床模型或三轴机床模型分别沿着X轴、Y轴、Z轴平移的距离,即得到平移参数(d

其中:d

本实施例的其他部分与上述实施例1-4任一项相同,故不再赘述。

实施例6:

本实施例在上述实施例1-5任一项的基础上做进一步优化,如图3所示,计算旋转参数的步骤包括:

步骤C1、建立飞机坐标系O-XYZ,并在零点位置标定五轴机床模型与维型定位工装03连接的主动球铰零点坐标(X

步骤C2、在承接位置标定五轴机床模型与维型定位工装03连接的主动球铰承接点坐标(X

步骤C3、根据主动球铰零点坐标与从动球铰零点坐标得到零点球铰直线,根据主动球铰承接点坐标和从动球铰承接点坐标得到承接点球铰直线;

零点球铰直线的计算公式如下:

其中:(m

承接点球铰直线的计算公式如下:

其中:(m

步骤C4、计算零点球铰直线与承接点球铰直线之间的夹角,即得到旋转参数。

本实施例的其他部分与上述实施例1-5任一项相同,故不再赘述。

实施例7:

本实施例在上述实施例1-6任一项的基础上做进一步优化,如图4-图6所示,计算零点球铰直线与承接点球铰直线之间的夹角包括以下步骤:

步骤D1、将零点球铰直线投影至XOY平面得到第一零点投影线O

步骤D2、计算第一零点夹角

当第一零点投影线O

当第一零点投影线O

当第一零点投影线O

其中(m

当第一承接点投影线O

当第一承接点投影线O

当第一承接点投影线O

其中(m

步骤D3、将零点球铰直线投影至XOZ平面得到第二零点投影线O

步骤D4、计算第二零点夹角

当第二零点投影线O

当第二零点投影线O

当第二零点投影线O

其中:(m

当第二承接点投影线O

当第二承接点投影线O

当第二承接点投影线O

其中:(m

本实施例的其他部分与上述实施例1-6任一项相同,故不再赘述。

以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号