首页> 中国专利> 基于ZVS_PWM双向DC-DC CUK变换器、变换系统和方法

基于ZVS_PWM双向DC-DC CUK变换器、变换系统和方法

摘要

本发明提出了一种基于ZVS_PWM双向DC‑DC CUK变换器、变换系统和工作方法,包括:第一变换器正极输出端连接均衡总线正极端,第一变换器负极输出端连接均衡总线负极端,第二变换器正极输出端连接均衡总线正极端,第二变换器负极输出端连接均衡总线负极端,第N变换器正极输出端连接均衡总线正极端,第N变换器负极输出端连接均衡总线负极端,所述N为正整数。通过在均衡总线中使用变换器,实现了能量在总线中的平衡,使均衡总线系统运行更加稳定、更加流畅,能量损耗更小。

著录项

  • 公开/公告号CN112615542A

    专利类型发明专利

  • 公开/公告日2021-04-06

    原文格式PDF

  • 申请/专利权人 重庆大学;

    申请/专利号CN202011566981.8

  • 申请日2020-12-25

  • 分类号H02M3/158(20060101);H02J7/00(20060101);

  • 代理机构50240 重庆天成卓越专利代理事务所(普通合伙);

  • 代理人路宁

  • 地址 400030 重庆市沙坪坝区沙正街174号

  • 入库时间 2023-06-19 10:29:05

说明书

技术领域

本发明涉及DC-DC CUK变换器领域,尤其涉及一种基于ZVS_PWM双向DC-DC CUK变换器、变换系统和方法。

背景技术

直流变换器一般采用PWM控制方式,开关管工作在硬开关状态,双向DC-DCCUK变换器是一种典型的直流变换器,被广泛应用于总线式储能元件均衡电路中,其结构如图10所示。由于实际的开关管不是理想器件,在开通时开关的电压不是立即下降到零,而是有一个下降时间,同时它的电流也不是立即上升到负载电流,也有一个上升时间。在这段时间里,电流和电压有一个交叠区,产生损耗,称之为开通损耗。当开关管关断时,开关管的电压不是立即从零上升到电源电压,而是有一个上升时间,同时它的电流也不是立即下降到零,也有一个下降时间。在这段时间里,电流和电压也有一个交叠区,产生损耗,称之为关断损耗。开通损耗和关断损耗合称为开关损耗,在一定条件下,开关管在每个开关周期中的开关损耗是恒定的,变换器总的开关损耗与开关频率成正比,开关频率越高,总的开关损耗就越大,变换器的效率就越低,进而导致总线式储能元件均衡系统的均衡效率越低。因此开关的存在限制了变换器开关频率的提高,从而限制了变换器以及均衡系统的小型化和轻量化。

发明内容

本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种基于ZVS_PWM双向DC-DC CUK变换器、变换系统和方法。

为了实现本发明的上述目的,本发明提供了一种基于ZVS_PWM双向DC-DCCUK变换器,其特征在于,包括:

第一电感、第四电感、第一a电容、第一b电容、第二电容、第一功率开关、第二功率开关、第一辅助开关、第二辅助开关、第一谐振电感、第二谐振电感、第一谐振电容、第二谐振电容;

第一电感一端连接储能元件正极,所述第一电感另一端连接第一功率开关漏极,所述第一电感另一端还连接第一辅助开关源极,第一谐振电容一端连接第一辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第二b电容一端连接第一功率开关源极,所述第二b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二功率开关漏极。

优选的,还包括:第一二极管、第二二极管、第一谐振二极管、第二谐振二极管;所述第一二极管正极连接第一功率开关源极,所述第一二极管负极连接第一功率开关漏极,所述第二二极管正极连接第二功率开关源极,所述第二二极管负极连接第二功率开关漏极,所述第一谐振二极管正极连接第一辅助开关源极,所述第一谐振二极管负极连接第一辅助开关漏极;所述第二谐振二极管正极连接第二辅助开关源极,所述第二谐振二极管负极连接第二辅助开关漏极。

优选的,第二电感,

所述第二电感一端连接电源负极,所述第二电感另一端连接第一功率开关源极。

优选的,还包括:第三电感,所述第三电感一端连接第二功率开关源极,所述第三电感另一端连接第二电容一端。

本发明还公开一种基于ZVS_PWM双向DC-DC CUK变换器的变换系统,包括:第一变换器正极输出端连接均衡总线正极端,第一变换器负极输出端连接均衡总线负极端,第二变换器正极输出端连接均衡总线正极端,第二变换器负极输出端连接均衡总线负极端,第N变换器正极输出端连接均衡总线正极端,第N变换器负极输出端连接均衡总线负极端,所述N为正整数。

本发明还公开一种基于ZVS_PWM双向DC-DC CUK变换器的工作方法,包括如下步骤:

DC-DC CUK变换器左侧向右侧供电时,分为六个阶段,

S1,在t0-t1的阶段,第一功率开关导通,第一辅助开关关断,输入电流和输出电流均通过第一功率开关流通,i

其中,i

此阶段电路工作在常规的PWM模式,当第一功率开关由导通切换至关断时,此阶段结束;

S2,在t1-t2的阶段,第一功率开关、第一辅助开关均关断,输入电流和输出电流通过第一辅助开关续流二极管给第一谐振电容进行恒流充电,

其中,C

其中,t∈[t

其中,ΔT

S3,在t2-t3的阶段,第一功率开关、第一辅助开关均关断,由于第一谐振电容端电压大于第一a电容端电压和第一b电容端电压之和,因此第二二极管导通,此阶段第一谐振电容、第一谐振电感、第二谐振电感、第一a电容、第一b电容、第一辅助开关续流二极管、第二功率开关续流二极管构成谐振回路,

u

i

其中L

忽略管压降,求解式(4)-(7),

其中,t∈[t

当i

S4,在t3-t4的阶段,第一功率开关、第一辅助开关均关断,输入电流和输出电流均通过第二功率开关续流二极管流通,i

S5,在t4-t5的阶段,第一功率开关保持关断,第一辅助开关导通,此阶段第一谐振电容、第一谐振电感、第二谐振电感、第一a电容、第一b电容、第一辅助开关、第二功率开关续流二极管构成谐振电路,谐振方程同式(4)-(6),初始条件为,

忽略管压降,求解式(4)-(6),(9),

其中,t∈[t

S6,在t5-t6的阶段,第一a电容、第一b电容开始通过第一二极管和第二二极管对第一谐振电感和第二谐振电感放电并反向充电,

i

求解(11)(12),

其中,t∈[t

其中,ΔT

输入电压与输出电压关系的推导如下,

在一个周期内,第四电感的平均电压值为零,因此第二功率开关端电压在一个周期内的平均值等于输出电压,

其中,T

其中,ΔT

由式(17)可以看出,η表示变换器的转换效率;当电路参数确定后,可以通过改变PWM周期、第一阶段时间间隔、第三阶段时间间隔来改变输出电压。

综上所述,由于采用了上述技术方案,本发明的有益效果是:

1该电路引入谐振电路可以实现开关管的软开关,降低开关损耗;

2变换器可以采用恒定频率控制,即PWM控制;

3该电路可以应用更高频开关管,实现变换器的小型化和轻量化;

4该电路完全堆成,能量双向流动分析一致;

5该电路可用于均衡网络中,各均衡电路可以实现独立工作,互相干扰很小。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1是本发明基于零电流PWM双向DC-DC CUK变换器的总线式储能元件均衡系统连接示意图;

图2是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图3是本发明基于ZVS_PWM双向DC-DC CUK变换器工作第一阶段;

图4是本发明基于ZVS_PWM双向DC-DC CUK变换器工作第二阶段;

图5是本发明基于ZVS_PWM双向DC-DC CUK变换器工作第三阶段;

图6是本发明基于ZVS_PWM双向DC-DC CUK变换器工作第四阶段;

图7是本发明基于ZVS_PWM双向DC-DC CUK变换器工作第五阶段;

图8是本发明基于ZVS_PWM双向DC-DC CUK变换器工作第六阶段;

图9是基于ZVS_PWM双向DC-DC CUK变换器的时序图;

图10是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图11是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图12是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图13是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图14是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图15是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图16是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图17是本发明基于ZVS_PWM双向DC-DC CUK变换器连接示意图。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。

如图1所示,本发明提供了一种基于ZVS_PWM双向DC-DC CUK变换系统,其特征在于,包括:第一变换器正极输出端连接均衡总线正极端,第一变换器负极输出端连接均衡总线负极端,第二变换器正极输出端连接均衡总线正极端,第二变换器负极输出端连接均衡总线负极端,第N变换器正极输出端连接均衡总线正极端,第N变换器负极输出端连接均衡总览负极端,所述N为正整数。

通过在均衡总线中使用变换器,实现了能量在总线中的平衡,使均衡总线系统运行更加稳定、更加流畅,能量损耗更小。

如图2和10所示,本发明提供了一种基于ZVS_PWM双向DC-DC CUK变换器,包括:第一电感、第四电感、第一a电容、第一b电容、第二电容、第一功率开关、第二功率开关、第一辅助开关、第二辅助开关、第一谐振电感、第二谐振电感、第一谐振电容、第二谐振电容;

第一电感一端连接储能元件正极,所述第一电感另一端连接第一功率开关漏极,所述第一电感另一端还连接第一辅助开关源极,第一谐振电容一端连接第一辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第二b电容一端连接第一功率开关源极,所述第二b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二功率开关漏极。

上述技术方案的有益效果为:为该电路添加谐振电路,实现开关管的软开关,该电路完全对称,能量双向流动分析一致。

所述基于ZVS_PWM双向DC-DC CUK变换器,优选的,还包括:第一二极管、第二二极管、第一谐振二极管、第二谐振二极管;所述第一二极管正极连接第一功率开关源极,所述第一二极管负极连接第一功率开关漏极,所述第二二极管正极连接第二功率开关源极,所述第二二极管负极连接第二功率开关漏极,所述第一谐振二极管正极连接第一辅助开关源极,所述第一谐振二极管负极连接第一辅助开关漏极;所述第二谐振二极管正极连接第二辅助开关源极,所述第二谐振二极管负极连接第二辅助开关漏极。

上述技术方案的有益效果为:所述第一二极管、第二二极管、第一谐振二极管、第二谐振二极管能够提高相应功率开关的开关速率。

所述基于ZVS_PWM双向DC-DC CUK变换器,优选的,还包括:第二电感,

所述第二电感一端连接电源负极,所述第二电感另一端连接第一功率开关源极。

上述技术方案的有益效果为:该电路可应用于均衡网络中,各均衡电路可以实现独立工作,相互干扰很小。

所述基于ZVS_PWM双向DC-DC CUK变换器,优选的,还包括:第三电感,

所述第三电感一端连接第二功率开关源极,所述第三电感另一端连接第二电容一端。

上述技术方案的有益效果为:该电路可应用于均衡网络中,各均衡电路可以实现独立工作,相互干扰很小。

由于涉及的变换器双向对称,因此变换器从左侧向右侧供电与右侧向左侧供电原理相同。该电路从左侧向右侧供电(第二功率开关、第二辅助开关始终关断)时分为六个阶段,

图3为均衡电路工作的第一阶段(t0-t1);

此阶段,第一功率开关导通,第一辅助开关关断,输入电流和输出电流均通过第一功率开关流通,i

其中,i

此阶段电路工作在常规的PWM模式,当第一功率开关由导通切换至关断时,此阶段结束;

图4为均衡电路工作的第二阶段(t1-t2);

此阶段,第一功率开关、第一辅助开关均关断,输入电流和输出电流通过第一辅助开关续流二极管给第一谐振电容进行恒流充电,

其中,C

其中,t∈[t

其中,ΔT

图5为均衡电路工作的第三阶段(t2-t3);

此阶段,第一功率开关、第一辅助开关均关断,由于第一谐振电容端电压大于第一a电容端电压和第一b电容端电压之和,因此第二二极管导通,此阶段第一谐振电容、第一谐振电感、第二谐振电感、第一a电容、第一b电容、第一辅助开关续流二极管、第二功率开关续流二极管构成谐振回路,

u

i

其中L

忽略管压降,求解式(4)-(7),

其中,t∈[t

当i

图6为均衡电路工作的第四阶段(t3-t4);

此阶段,第一功率开关、第一辅助开关均关断,输入电流和输出电流均通过第二功率开关续流二极管流通,i

图7为均衡电路工作的第五阶段(t4-t5);

此阶段,第一功率开关保持关断,第一辅助开关导通,此阶段第一谐振电容、第一谐振电感、第二谐振电感、第一a电容、第一b电容、第一辅助开关、第二功率开关续流二极管构成谐振电路,谐振方程同式(4)-(6),初始条件为,

忽略管压降,求解式(4)-(6),(9),

其中,t∈[t

图8为均衡电路工作的第六阶段(t5-t6);

此阶段,第一a电容、第一b电容开始通过第一二极管和第二二极管对第一谐振电感和第二谐振电感放电并反向充电,

i

求解(11)(12),

其中,t∈[t

其中,ΔT

输入电压与输出电压关系的推导如下,

在一个周期内,第四电感的平均电压值为零,因此第二功率开关端电压在一个周期内的平均值等于输出电压,

其中,T

其中,ΔT

其中,η表示变换器的转换效率;由式(17)可以看出,当电路参数确定后,可以通过改变PWM周期、第一阶段时间间隔、第三阶段时间间隔来改变输出电压;

图9是基于ZVS_PWM双向DC-DC CUK变换器的时序图,通过时序图对均衡电路进行时序控制。

图10是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

图11是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

第二电感一端连接储能元件负极,所述第二电感另一端连接第一功率开关源极,第一谐振电感一端连接储能元件正极,所述第一谐振电感一端还连接第一辅助开关源极,所述第一谐振电感一端还连接第一功率开关漏极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第一谐振电容一端连接第一功率开关源极,所述第一谐振电容另一端连接第一辅助开关漏极,第一b电容一端连接第一功率开关的源极,所述第一b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第二电容一端连接第二功率开关漏极,所述第二电容另一端连接第三电感一端,所述第三电感另一端连接第二功率开关源极。

图12是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

第一电感一端连接储能元件正极,所述第一电感另一端连接第一功率开关漏极,所述第一电感另一端还连接第一辅助开关源极,第一谐振电容一端连接第一辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关的源极,所述第一b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第二电容一端连接第二功率开关漏极,所述第二电容另一端连接第三电感一端,所述第三电感另一端连接第二功率开关源极。

图13是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

第二电感一端连接储能元件负极,所述第二电感另一端连接第一功率开关源极,第一谐振电感一端连接储能元件正极,所述第一谐振电感一端还连接第一辅助开关源极,所述第一谐振电感一端还连接第一功率开关漏极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第一谐振电容一端连接第一功率开关源极,所述第一谐振电容另一端连接第一辅助开关漏极,第一b电容一端连接第一功率开关的源极,所述第一b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二功率开关漏极。

图14是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

第一电感一端连接储能元件正极,所述第一电感另一端连接第一功率开关漏极,所述第一电感另一端还连接第一辅助开关源极,第二电感一端连接储能元件负极,所述第二电感另一端连接第一功率开关源极,第一谐振电容一端连接第一辅助开关漏极,所述第一谐振电容另一端连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关的源极,所述第一b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第二电容一端连接第二功率开关漏极,所述第二电容另一端连接第三电感一端,所述第三电感另一端连接第二功率开关源极。

图15是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

第一电感一端连接储能元件正极,所述第一电感另一端连接第一功率开关漏极,所述第一电感另一端还连接第一辅助开关源极,第二电感一端连接储能元件负极,所述第二电感另一端连接第一功率开关源极,第一谐振电容一端连接第一辅助开关漏极,所述第一谐振电容另一端连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关的源极,所述第一b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二功率开关漏极。

图16是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

第一电感一端连接储能元件正极,所述第一电感另一端连接第一功率开关漏极,所述第一电感另一端还连接第一辅助开关源极,第一谐振电容一端连接第一辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关的源极,所述第一b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第三电感一端连接第二功率开关源极,第三电感另一端连接第二电容一端,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二功率开关漏极。

图17是本发明具体实施方式基于ZVS_PWM双向DC-DC CUK变换器连接示意图;

第二电感一端连接储能元件负极,所述第二电感另一端连接第一功率开关源极,第一谐振电感一端连接储能元件正极,所述第一谐振电感一端还连接第一辅助开关源极,所述第一谐振电感一端还连接第一功率开关漏极,所述第一谐振电感另一端连接第一a电容一端,所述第一a电容另一端连接第二功率开关源极,第一谐振电容一端连接第一功率开关源极,所述第一谐振电容另一端连接第一辅助开关漏极,第一b电容一端连接第一功率开关的源极,所述第一b电容另一端连接第二谐振电感一端,所述第二谐振电感另一端连接第二辅助开关源极,所述第二谐振电感另一端还连接第二功率开关漏极,第二谐振电容一端连接第二辅助开关漏极,所述第二谐振电容另一端连接第二功率开关源极,第三电感一端连接第二功率开关源极,第三电感另一端连接第二电容一端,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二功率开关漏极。

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号