首页> 中国专利> 模型和数据驱动的暖通空调最优设定温度获取方法及设备

模型和数据驱动的暖通空调最优设定温度获取方法及设备

摘要

本发明涉及一种模型和数据驱动的暖通空调最优设定温度获取方法及设备,包括以下步骤:结合楼宇物理仿真模型和基于ANN的数据驱动,构建楼宇HVAC动态特性模型;以所述楼宇HVAC动态特性模型作为约束,构建考虑能耗和人员舒适度的设定温度优化模型,采用群体智能算法求解获得暖通空调最优设定温度。与现有技术相比,本发明具有准确度高、方便可靠等优点。

著录项

  • 公开/公告号CN112560160A

    专利类型发明专利

  • 公开/公告日2021-03-26

    原文格式PDF

  • 申请/专利权人 国网上海市电力公司;上海交通大学;

    申请/专利号CN202011555389.8

  • 申请日2020-12-24

  • 分类号G06F30/13(20200101);G06F30/27(20200101);G06K9/62(20060101);G06N3/00(20060101);G06N3/04(20060101);G06F111/04(20200101);G06F113/04(20200101);G06F119/08(20200101);

  • 代理机构31225 上海科盛知识产权代理有限公司;

  • 代理人翁惠瑜

  • 地址 200122 上海市浦东新区自由贸易试验区源深路1122号

  • 入库时间 2023-06-19 10:24:22

说明书

技术领域

本发明属于电力系统需求响应和智能用电技术领域,涉及一种暖通空调温度设定控制方法,尤其是涉及一种模型和数据驱动的暖通空调最优设定温度获取方法及设备。

背景技术

现有电网使用中,电网的季节性尖峰负荷、时段性高峰负荷矛盾日益突出。其中空调负荷对峰值负荷的贡献越来越大,已占夏季高峰负荷的30%~50%。现代楼宇具有良好的蓄热能力,能在基本不影响用户舒适度的前提下提前或推迟用电行为,因而可作为重要的需求侧资源,向电网提供削峰、填谷等服务。

为对楼宇空调系统进行协调控制,一项基础性工作是建立其动态模型。现有研究中广泛采用等效热参数(equivalent thermal parameter,ETP)模型,即将楼宇热工模型等值为低阶RC模型。但该方法仅适应于居民住宅等小型楼宇,不适应具有复杂热动态特性的大中型楼宇和具有复杂结构的暖通空调系统(heating ventilation and airconditioning,HVAC)。针对商业楼宇HVAC,有文献提出了数据驱动的建模方案,该方案无需关注楼宇及HVAC的物理结构,属于黑箱建模。但现有技术重点在于分析HVAC的节能潜力,不能用于分析其响应能力。对需求响应潜力评估问题,数据驱动机制的主要困难在于,影响楼宇响应能力的外部环境和内部热负荷场景众多,实际中很难获得足够的历史样本。

另外,现有文献一般仅考虑了楼宇的用电成本,没有考虑楼宇参与需求响应会影响工作效率的隐性成本,该缺陷会对用户参与需求响应的意愿做出过于乐观的误判,也不利于制定合理的需求响应机制。

发明内容

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种准确度高、方便的模型和数据驱动的暖通空调最优设定温度获取方法及设备。

本发明的目的可以通过以下技术方案来实现:

一种模型和数据驱动的暖通空调最优设定温度获取方法,包括以下步骤:

结合楼宇物理仿真模型和基于ANN的数据驱动,构建楼宇HVAC动态特性模型;

以所述楼宇HVAC动态特性模型作为约束,构建考虑能耗和人员舒适度的设定温度优化模型,采用群体智能算法求解获得暖通空调最优设定温度。

进一步地,所述构建楼宇HVAC动态特性模型具体为:

基于BIM建立楼宇HVAC的物理模型;

对所述物理模型进行仿真,生成训练数据集;

基于所述训练数据集训练获得一ANN模型,获得构建楼宇HVAC动态特性模型,表示为:

ΔP

其中,ΔP

进一步地,所述楼宇HVAC采用全局温度调整控制方法。

进一步地,所述T

进一步地,所述设定温度优化模型的目标函数为:

其中,T

所述设定温度优化模型的约束条件包括HVAC动态方程约束、温度设定值范围约束和温度设定值变化量约束。

进一步地,所述C

其中,λ

进一步地,所述采用群体智能算法求解获得暖通空调最优设定温度中,每次获得种群最优值后,根据HVAC温度设定分辨率,将所述种群最优值近似至最靠近的分辨率点,再进入下一次迭代。

进一步地,所述ANN模型分季节进行训练和更新。

本发明还提供一种暖通空调最优响应用电方法,其特征在于,基于如上所述的模型和数据驱动的暖通空调最优设定温度获取方法确定最优设定温度,以该最优设定温度运行点作为HVAC的基线功率,形成最优响应用电策略。

本发明还提供一种电子设备,包括:

一个或多个处理器;

存储器;和

被存储在存储器中的一个或多个程序,所述一个或多个程序包括用于执行如上所述模型和数据驱动的暖通空调最优设定温度获取方法的指令。

与现有技术相比,本发明具有以下有益效果:

1、针对大中型楼宇热动态模型和HVAC系统十分复杂、难以建立解析形式的动态方程的问题,将楼宇物理仿真模型和基于ANN的数据驱动方法结合起来,构建楼宇HVAC动态特性模型,可有效解决需求响应实测样本少且分布不均衡以及试验代价高等问题,同时利用楼宇物理模型而非降阶等值模型可保证基础模型的准确性,方便可靠。

2、本发明将ANN形式封装的HVAC动态模型与粒子群优化算法结合起来,考虑了室温变化对内部人员工作效率的影响,求解了HVAC最优温度设定问题,能够获得更精确的最优设计温度,显著降低了楼宇用户的总成本。

附图说明

图1为本发明基于ANN的HVAC动态建模示意图;

图2为室外温度与功率变化的分段线性关系示意图;

图3为温度设定值变迁序列示意图;

图4为HVAC响应成本曲线示意图;

图5为实施例的训练结果回归分析示意图;

图6为实施例的误差分析示意图;

图7为实施例的工作效率与室温的关系示意图;

图8为实施例的全局最优适应度收敛情况示意图;

图9为实施例的HVAC响应成本曲线示意图;

图10为实施例的HVAC投标曲线示意图。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

本发明的一种实施方式是提供一种模型和数据驱动的暖通空调最优设定温度获取方法,包括以下步骤:结合楼宇物理仿真模型和基于ANN的数据驱动,构建楼宇HVAC动态特性模型;以所述楼宇HVAC动态特性模型作为约束,构建考虑能耗和人员舒适度的设定温度优化模型,采用群体智能算法求解获得暖通空调最优设定温度。该方法具体说明如下。

1、基于ANN的HVAC动态特性建模

单温区的热动态过程可用ETP模型表述为:

P

式中:P

由于楼宇能耗优化、需求响应等问题常需要考虑跨时段约束,故式(1)是这类问题的基础方程。但是,式(1)仅适应于小型居民住宅和分散式空调,不适合包含多个复杂耦合温区的大中型楼宇。

为了解决大中型楼宇HVAC的热动态特性建模问题,本发明提出将物理模型和数据驱动方法相结合的建模思路。首先做出如下两个假设。

(1)HVAC采用全局温度调整(global temperature adjustment,GTA)控制方法。相比于直接控制冷水机组、水泵等控制方法,GTA从末端进行调控,对舒适度的影响是可预知、可控的,且各温区均匀承担调控指令。现代HVAC系统都支持GTA控制,无需为了满足电网互动需要而做专门改造。本发明以

(2)为保证舒适度,相邻时段的设定温度变化ΔT

根据上述假设,HVAC的动态过程可表示为:

式中:P

考虑到楼宇内部热模型以及HVAC系统的复杂性,本发明并不关注内部温度等状态变量的变化过程,仅关注HVAC功率变化与全局温度设定值的关系。

为了得出式(2)的非线性模型,本发明提出如图1所示的建模过程。图1由上下两个部分构成:

上部为物理建模过程,该过程依赖于精确的建筑信息模型(buildinginformation model,BIM),并可以EnergyPlus作为能耗模拟软件。为大幅度降低物理建模的工作量,可以自动或半自动方式从BIM中提取EnergyPlus所需的能效仿真数据,从而建立精准的能耗模型。需说明的是,对于已有楼宇,其物理模型一旦建好则在很长时间内保持不变。

下部为基于ANN的数据驱动建模过程。本发明利用ANN的非线性拟合能力,通过物理模型仿真获得大量训练样本,从而构建ΔP

通过将上述两类模型相结合,一方面,可有效解决需求响应实测样本少且分布不均衡以及试验代价高等问题;另一方面,利用楼宇物理模型而非降阶等值模型可保证基础模型的准确性。

ANN模型基于楼宇物理仿真模型获得的训练数据集进行训练获得,训练样本的特征包括内部热负荷特征、室外温度特征和全局温度设定值特征等。

(1)内部热负荷特征。楼内热负荷具有明显的时段性,表现为不同工作日、同时段的人员数量、照明和插座设备等类型热负荷相似,因此可按照时段t划分热负荷水平。具体方法是,根据式(3),分时段统计各类热负荷的历史平均值,并以其作为热负荷设置标准输入物理模型。

式中:

为反映热负荷的季节性,ANN模型可以分季节训练和更新;若某些楼宇的工作日热负荷在周内呈规律性变化,则可按同一星期类型日做统计,并新增类型日作为样本特征。

(2)室外温度特征。研究表明,在温度设定值发生相同的变化下,HVAC功率变化量与室外温度T

(3)全局温度设定值特征。温度设定值变迁序列(T

ANN模型的结构可采用前馈ANN,包括:

1)输入层:含4个输入节点,分别对应T

2)输出层:含1个输出节点,对应ΔP

3)隐藏层:通过试验,本发明设定2个隐藏层,每层各包含5个神经元。

将训练好的ANN模型表示为:

ΔP

由于内部热负荷包括人员、照明、插座设备三类,较为复杂,而热负荷水平与时段的相关性强,因此本方法采用时段t来对三种热负荷水平进行综合描述,实施起来更为方便。

利用上述ANN模型,下面开展两项研究,首先是楼宇最优设定温度。

2、HVAC的最优设定温度求解

1)优化模型

HVAC设定温度除了会影响楼宇能耗,还会影响内部人员的舒适度,进而影响其工作效率。综合考虑上述两个因素,本发明建立了如下目标函数:

式中:T

式(5)第一项为HVAC用电成本:

式中:λ

式(5)第二项为楼宇内人员工作效率损失:

式中:λ

η(T)=aT

式中:a—d为拟合系数。

关于工作效率与室温关系的实验测定方法,可参考文献[7—8],本发明对此不做展开讨论。

优化问题中考虑了如下约束条件:

(1)HVAC动态方程约束,来自式(4):

P

(2)T

(3)T

2)基于粒子群优化的求解算法

由于约束(7-a)无解析表达式,无法用常规优化方法求解上述问题,而利用群体智能进行全局寻优的元启发式算法则可有效求解这类问题。本发明采用粒子群优化(particle swarm optimization,PSO)算法。设粒子群维度为J×N,其中J为粒子数,N为时段数。第j个粒子位置表示为:

式中:T代表决策变量T

粒子j的飞行速度

记粒子j当前搜索到的最优位置为个体极值:

记粒子群当前搜索到的最优位置为全局极值:

在找到个体和全局极值后,粒子根据下式更新自身的速度:

式中:c

粒子根据下式迭代更新自身位置直至收敛:

每次粒子位置更新后,还需根据HVAC温度设定的分辨率,将结果近似至最靠近的分辨率点,并以此评价此解的质量,然后进入下一步的迭代。

记t时段最优温度设定值为

在本发明的另一个实施例方式中,基于如上所述的模型和数据驱动的暖通空调最优设定温度获取方法确定最优设定温度,以该最优设定温度运行点作为HVAC的基线功率,形成最优响应用电策略。以温度设定值作为控制变量,当楼宇参与电网互动时,会偏离经上述方法获得的最优设定温度

设响应时段为τ,新的温度设定值为

式中:第一项反映的是响应前后的平均功率变化;第二项用于扣除前后两个时段基线功率的变化。

再根据式(5-a)、(5-b),响应成本ΔC

式中:第一项为削减的用电成本,第二项为工作效率损失成本。

针对不同的温度设定值

上述方法将用户因偏离最优设定温度而产生的额外成本定义为HVAC的需求响应成本,为用户确定投标策略建立了理论依据。因此,本发明的模型和数据驱动的暖通空调最优设定温度获取方法可方便在应用于暖通空调最优响应用电方法中,也可方便形成用户的最优投标策略。

实施例

1)仿真模型

以某智能电网大楼的建筑结构为原型,建立3层办公楼仿真模型。该楼每层含6间长宽高为9m*6m*5m的办公室,窗户长宽为1m*1.5m,中间为宽2m的走廊。楼内热负荷以及HVAC参数均参考EnergyPlus标准文件设定,HVAC温度调节分辨率为1℃。采用某市某典型年6月13日气象数据,研究时段Γ为9:00~17:00。

2)ANN模型验证

本实施例采用CPU为i7-6700HQ的电脑经过2.3h仿真得到1.2节的1184组样本,然后按70%训练集、15%验证集和15%测试集的比例分配进行训练。

为评价ANN模型的拟合性能,采用决定系数R

式中:i是数据编号,y

ANN训练效果如图5所示,其4种情况下的R

随机取200组T

3)HVAC的最优设定温度

设该办公楼基准室温设定

式(6)中的拟合系数分别取为a=0.0000623,b=-0.0058274,c=0.1647524,d=-0.4685328,相应的效率曲线如图7所示。根据EnergyPlus标准办公楼宇设置标准,楼内人员密度取0.053820人/m

式中:GDP

经估算得

优化得到的9:00~17:00时段的HVAC设定温度序列如表1所示。可见,三种λ

由图8可见,经过30次左右的迭代,全局最优适应度均基本稳定,表明算法具有良好的收敛性。

表1最优设定温度的PSO结果

4)HVAC响应成本及投标曲线

进一步地,可基于上述最优设定温度实现暖通空调最优响应用电方法。设响应时段为13:00~14:00,分别取3种λ

上述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号