首页> 中国专利> 多晶金刚石推力轴承及其元件

多晶金刚石推力轴承及其元件

摘要

本发明提供一种推力轴承组件,其包括界定推力面的推力环和界定相对推力面的相对推力环。至少一个多晶金刚石元件与推力面耦合并界定接合表面。相对推力环包括金刚石反应性材料。运行中,接合表面与相对推力面接触。本发明还提供制造、组装和使用该推力轴承组件的方法、以及包括该推力轴承组件的系统和装置。

著录项

说明书

相关申请的交叉引用

本申请要求2018年7月30日提交的美国专利申请号16/049,617(在审)的权益,其全部内容通过引用纳入本文。

本申请涉及2017年2月10日提交的题为钻孔机(原文:Drilling Machine)的美国专利申请号15/430,254,该专利申请被转让给与本申请相同的受让人,并且通过引用将其全文纳入本文。本申请还涉及:同时提交的题为“具有超硬元件的滚珠组件(原文:RollerBall Assembly with Superhard Elements)”的美国专利申请;同时提交的题为“具有多晶金刚石接合元件的凸轮从动件(原文:Cam Follower with Polycrystalline DiamondEngagement Element)”的美国专利申请;以及同时提交的题为“多晶金刚石向心轴承(原文:Polycrystalline Diamond Radial Bearing)”的美国专利申请,其每一者都被转让给与本申请相同的受让人,并且通过引用将其全文纳入本文。

关于联邦资助开发研究的声明

无。

技术领域

本公开涉及推力轴承、包括该推力轴承的装置和系统、以及制造、组装和使用该推力轴承的方法。

背景技术

推力轴承(至少主要地)用于在工具、机械和组件中承受轴向负荷。热稳定多晶金刚石(TSP)(有或无碳化钨支承)和多晶金刚石复合物(PDC或PCD)被认为不适用于机械加工金刚石反应性材料,包括铁类金属和含痕量以上的金刚石催化剂或溶剂元素(包括钴、镍、钌、铑、钯、铬、锰、铜、钛或钽)的其他金属、金属合金、复合物、硬面、涂层或镀层。此外,上述不适用多晶金刚石的情况还扩展到所谓的“超合金”,包括含痕量以上的金刚石催化剂或溶剂元素的铁基、钴基和镍基超合金。通常用于机械加工此类材料的表面速度通常在约0.2m/s~约5m/s。虽然该表面速度并不是特别高,但是所产生的负荷以及伴随的温度(例如在切割尖端处)经常会超过金刚石的石墨化温度(即约700℃),其可能在金刚石催化剂或溶剂元素的存在下导致组件的快速磨损和故障。不受理论的束缚,具体的故障机理被认为由含碳的金刚石与被机械加工的亲碳的材料之间的化学相互作用所导致。关于多晶金刚石不适用于含金刚石催化剂或溶剂的金属或合金的机械加工的示例性参考文献是美国专利号3,745,623,其全部内容通过引用纳入本文。多晶金刚石不适用于机械加工含金刚石催化剂或金刚石溶剂的材料,导致了长期以来在所有与此类材料接触的应用中均不使用多晶金刚石。

以往,随着多晶金刚石轴承的开发,轴承制造商或将多晶金刚石轴承表面与非铁类金属(所谓的超硬材料)相匹配,或者更常见的是将其与紧密相向的互补的多晶金刚石表面相匹配。图1示出了具有多晶金刚石-多晶金刚石界面的推力轴承100的局部剖视图。本文中,“超硬”材料被定义为至少与碳化钨(例如碳化钨水泥或碳化钨砖)一样硬或更硬的材料,包括但不限于:碳化钨、渗透的碳化钨基质、碳化硅、氮化硅、立方氮化硼和多晶金刚石。本领域技术人员应理解,可以使用布氏标度来确定硬度,例如根据ASTM E10-14。关于多晶金刚石推力轴承的示例性参考文献是授予Nagel的美国专利号4,468,138;授予Geczy的美国专利号4,560,014;授予Gonzalez的美国专利号9,702,401;和授予Offenbacher的美国国防出版物T102,90,其全部内容通过引用纳入本文。

高性能多晶金刚石推力轴承是特别为严酷的环境(例如井下钻井和泵送或风力发电机组)而设计的,通常使用滑动的、配合的、重叠的多晶金刚石元件。这需要大量的多晶金刚石元件,每一个都与一组相对的多晶金刚石元件严格地平面接合。多晶金刚石元件必须安装在精确规定的高度或暴露,以确保配对的滑动接合。该现有技术中的目标为,作为支承区域,多晶金刚石元件在两面上均整面接触。对准和/或暴露的失败很可能产生点负荷、不均匀的负荷分配、或“边缘碰损”,因为多晶金刚石元件相对于彼此旋转,从而产生断裂的元件并最终导致轴承故障。与金刚石反应性材料(在下文中定义)相比,多晶金刚石更脆并且更容易受到损坏。

下面的表1中汇总了各种材料(包括抛光的多晶金刚石)在干燥的静止状态下以及在润滑的静止状态下的摩擦系数,其中“第一材料”为相对于“第二材料”被移动来确定第一材料的CoF的材料。

表1*

*参考资料包括《机械手册(原文:Machinery’s Handbook)》;Sexton TN,CooleyCH;用于井下石油和天然气钻井工具的多晶金刚石推力轴承;Wear2009;267:1041-5。

关于本申请的背景技术的其他重要参考文献来自国际机床与制造杂志(原文:International Journal of Machine Tools&Manufacture)46和47的题为“通过动态摩擦技术抛光多晶金刚石,第1部分:界面温度上升的预测(原文:Polishing ofpolycrystalline diamond by the technique of dynamic friction,part1:Predictionof the interface temperature rise)”和“第2部分,材料清除机理(原文:Part 2,Material removal mechanism)”,2005年和2006年。这些参考文献报道了在负荷下利用亲碳钢盘的干式滑动接触对PDC面进行动态摩擦抛光。这些参考文献的主要发现表明,抛光速率对滑动速率比负荷更敏感,并且随着金刚石表面的表面光洁度改善,钢盘与金刚石表面之间的热化学反应速率会大幅降低。作者及引用信息:Iwai,Manabu、Uematsu,T、Suzuki,K、Yasunaga,N.(2001).“使用旋转金属盘对PCD进行高效抛光(原文:High efficiencypolishing of PCD with rotating metal disc)”.ISAAT2001.231-238.,其结论是,在27MPa的压力下,滑动速度低于10.5m/s时,不会发生钢盘与PDC面之间的热化学反应。这些参考文献的全部内容通过引用纳入本文,就像它们的全部内容都被列出一样。应强调的是,上述数值基于空气中的干燥运行。显然,如果在液体冷却、润滑的环境中运行,则可以获得更高的速度和负载而不发生热化学反应。另外,值得注意的是经过抛光的多晶金刚石表面的热化学响应更低。铜和钛没有在早期通用电气公司的有关金刚石合成的文献中被典型地列出,但是后来被添加了。相关参考文献包括“在水和SiO

发明内容

本公开的一些方面包括推力轴承组件。推力轴承组件包括推力面,其具有多晶金刚石元件。多晶金刚石元件在其上具有接合表面。推力轴承组件包括相对推力面,其由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料。推力面与相对推力面耦合,使得接合表面与相对推力面接触。

本公开的其他方面包括承受轴向负荷的方法。方法包括使推力面与相对推力面耦合。推力面包括与其耦合的多晶金刚石元件。多晶金刚石元件在其上具有接合表面。相对推力面由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料。推力面与相对推力面耦合,使得接合表面与相对推力面接触。

本公开的其他方面包括推力轴承组件,其包括界定推力面的推力环。多晶金刚石元件与推力面耦合并界定接合表面。推力轴承组件还包括界定相对推力面的相对推力环。相对推力环由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料。接合表面与相对推力面接触。

附图简要说明

为了可以更详细地理解本公开的系统、装置和/或方法的特征和优点,可以参考形成本说明书的一个部分的附图中所示的实施方式,来对上述简要概述进行更具体的描述。但是,应当注意的是,附图仅示出各种示例性实施方式,因此不应视为对所公开概念的限制,因为其也可以包括其他有效实施方式。

图1所示为现有技术的多晶金刚石-多晶金刚石界面推力轴承的局部剖视图。

图2A所示为本申请的技术的实施方式的推力轴承的多晶金刚石推力面的俯视图。

图2B所示为与由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料的相对推力面滑动接触的、图2A的多晶金刚石推力面的侧视图。

图3A所示为本申请的技术的实施方式的推力轴承的多晶金刚石推力面的俯视图。

图3B所示为与由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料的相对推力面滑动接触的、图3A的多晶金刚石推力面的侧视图。

图4所示为本申请的技术的实施方式的示例性多晶金刚石元件的侧视图。

图5所示为本申请的技术的实施方式的示例性多晶金刚石元件的侧视图。

图6所示为本申请的技术的实施方式的示例性多晶金刚石元件的侧视图。

图7所示为本申请的技术的实施方式的示例性多晶金刚石元件的侧视图。

图8所示为本申请的技术的实施方式的示例性多晶金刚石元件的侧视图。

图9所示为未经边缘处理、具有尖锐角的多晶金刚石元件的侧视图。

图10A所示为经过边缘处理的多晶金刚石元件与相对推力面之间的边接触的简化视图。

图10B所示为未经边缘处理的、具有尖锐角的多晶金刚石元件与相对推力面之间的边接触的简化视图。

现在将参照示出了各种示例性实施方式的附图,来更全面地描述本公开的系统、装置和方法。但是,本公开的概念可以以许多不同的形式来实施,并且不应被解读成受本文所提出的实施方式的限制。相反,提供这些实施方式使得本公开彻底且完整,并向本领域技术人员充分传达各种概念的范围以及最佳和优选的实施方式。

具体实施方式

本公开的某些方面包括推力轴承和推力轴承组件、以及包括该推力轴承和推力轴承组件的装置和系统、以及制造、组装和使用该推力轴承和推力轴承组件的方法。在推力轴承中,一方的推力面由至少一些多晶金刚石形成或包括至少一些多晶金刚石,并且另一方的相对推力面由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料。

金刚石反应性材料

本文中,“金刚石反应性材料”是一种含痕量以上的金刚石催化剂或金刚石溶剂的材料。本文中,“金刚石反应性材料”是一种含痕量以上的金刚石催化剂或金刚石溶剂的材料。本文中,含“痕量”以上的金刚石催化剂或金刚石溶剂的金刚石反应性材料中,含有至少2重量百分比(重量%)的金刚石反应性材料。在一些方面中,本公开的金刚石反应性材料含有2~100重量%、或5~95重量%、或10~90重量%、或15~85重量%、或20~80重量%、或25~75重量%、或25~70重量%、或30~65重量%、或35~60重量%、或40~55重量%、或45~50重量%的金刚石催化剂或金刚石溶剂。本文中,“金刚石催化剂”是例如在负荷下并在达到或超过金刚石的石墨化温度的温度下(即约700℃),能够催化多晶金刚石石墨化的化学元素、化合物或材料。本文中,“金刚石溶剂”是例如在负荷下并在达到或超过金刚石的石墨化温度的温度下,能够使多晶金刚石增溶的化学元素、化合物或材料。因此,金刚石反应性材料包括这样的材料,其在负荷下并在达到或超过金刚石的石墨化温度的温度下,可以导致由至少一些多晶金刚石形成或包括其的组件(例如金刚石尖头工具)磨损、有时快速磨损、以及故障。

金刚石反应性材料包括但不限于含痕量以上的金刚石催化剂或溶剂元素的金属、金属合金和复合材料。在一些方面中,金刚石反应性材料为硬面、涂层或镀层的形态。例如但不限于,金刚石反应性材料可以是铁、钴、镍、钌、铑、钯、铬、锰、铜、钛、钽、或其合金。在一些方面中,金刚石反应性材料为超合金,包括但不限于铁基、钴基和镍基超合金。在某些方面中,金刚石反应性材料不是和/或不包括(即明确排除)所谓的“超硬材料”。本领域技术人员应理解,“超硬材料”是由材料的硬度所定义的一类材料,其可以根据布氏、洛氏、努氏和/或维氏标度来确定。例如,超硬材料包括当通过维氏硬度测试进行测量时硬度值超过40吉帕斯卡(GPa)的材料。本文中,超硬材料包括至少与碳化钨砖和/或碳化钨水泥一样硬的材料,例如根据这些硬度标度之一(例如布氏标度)确定。本领域技术人员应理解,布氏硬度测试例如可以根据ASTM E10-14实施;维氏硬度测试例如可以根据ASTM E384实施;洛氏硬度测试例如可以根据ASTM E18实施;以及努氏硬度测试例如可以根据ASTM E384实施。本公开的“超硬材料”包括但不限于:碳化钨(例如砖或水泥)、渗透的碳化钨基质、碳化硅、氮化硅、立方氮化硼和多晶金刚石。因此,在一些方面中,“金刚石反应性材料”部分地或完全地由比超硬材料更软(不更硬)的材料(例如金属、金属合金、复合物)构成,该材料例如与碳化钨(例如砖或水泥)相比不更硬,例如根据这些硬度测试之一(例如布氏标度)确定。

使多晶金刚石与金刚石反应性材料对接

在一些方面中,本公开提供通过与金刚石反应性材料接触的多晶金刚石元件在推力面和相对推力面之间对接而形成接合。例如,多晶金刚石元件可以定位并布置于一方的推力面上从而与另一方的相对推力面接触,其中另一方的相对推力面由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料。多晶金刚石元件可以具有接合表面,其用于与金刚石反应性材料的相对接合表面接合。本文中,“接合表面”是指定位并布置于推力轴承组件中的材料(例如多晶金刚石或金刚石反应性材料)的表面,从而使得在推力轴承组件运行中,接合表面在两个组件之间(例如在推力面和相对推力面之间)对接而形成接触。“接合表面”在本文中也可以指“推力轴承表面”或“轴向轴承表面”或“推力面”。

在一些方面中,相对接合表面包括至少2重量%的金刚石反应性材料或由其构成,或包括2~100重量%、或5~95重量%、或10~90重量%、或15~85重量%、或20~80重量%、或25~75重量%、或25~70重量%、或30~65重量%、或35~60重量%、或40~55重量%、或45~50重量%的金刚石反应性材料或由其构成。

在某些应用中,多晶金刚石元件(或至少其接合表面)是磨光的或抛光的,任选为高度磨光的或高度抛光的。虽然在至少一些应用中优选高度抛光的多晶金刚石元件,但是本公开的范围不限于高度抛光的多晶金刚石元件,并且包括高度磨光的或抛光的多晶金刚石元件。本文中,如果表面的表面光洁度为20μin或约20μin(例如表面光洁度在约18~约22μin),则定义该表面为“高度磨光的”。本文中,如果表面的表面光洁度小于约10μin,或在约2~约10μin,则定义该表面为“抛光的”。本文中,如果表面的表面光洁度小于约2μin,或在约0.5μin~小于约2μin,则定义该表面为“高度抛光的”。在一些方面中,接合表面的表面光洁度在0.5μin~40μin,或在2μin~30μin,或在5μin~20μin,或在8μin~15μin,或小于20μin,或小于10μin,或小于2μin,或为其间的任意范围。被抛光至表面光洁度为0.5μin的多晶金刚石的摩擦系数约为标准磨光的表面光洁度为20-40μin的多晶金刚石的一半。Lund等人的美国专利号5,447,208和5,653,300(其全部内容通过引用纳入本文)提供了与多晶金刚石的抛光相关的公开。本领域技术人员应理解,表面光洁度可以通过表面光度仪或通过原子力显微镜测量。

示例性推力轴承

现在回到附图,现描述推力轴承的示例性、非限制性实施方式。附图中,类似的参考数字表示类似的元件。例如,附图2A和2B中,参考数字202表示多晶金刚石元件的接合表面,并且附图3A和3B中,参考数字302表示多晶金刚石元件的接合表面。

图2A所示为本申请的技术的实施方式的、具有推力面201的推力环220的俯视图。推力面220(也称为多晶金刚石推力面)包括多晶金刚石元件202,其嵌入推力面220、与推力面220连接、或与推力面220耦合和/或接合。可以通过本领域已知方法将多晶金刚石元件202直接安装于推力面220,该方法包括但不限于:钎焊、胶合、压配、收缩配合或螺纹。尽管将推力面220显示和描述为具有三个多晶金刚石元件202,但是本领域技术人员应理解,推力面220可以包括大于或小于三个多晶金刚石元件202。同样地,尽管显示为均等间距,但是本领域技术人员应理解,多晶金刚石元件202之间的间距可以是均等的或不均等的。此外,本领域技术人员应理解,多晶金刚石元件202之间的间距可以比图2A所示的更大或更小。

每个多晶金刚石元件202包括接合表面222。接合表面222可以是磨光的、抛光的、高度磨光的、或高度抛光的多晶金刚石的表面层。在一些方面中,接合表面222可以是平面的或凸形的。

图2B示出了推力轴承组件200,其包括与相对推力环203的相对推力面204滑动接触的推力环220的推力面201。推力环203和相对推力面204由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料。因此,运行中,当推力轴承组件200承受负荷时,接合表面222与相对推力面204(也称为相对接合表面)滑动接触。

尽管将推力环220和203均显示为具有环的形状,但是本领域技术人员应理解,本公开的推力面可以形成在基于特定应用适用于推力轴承的其他形状的推力组件上。

图3A所示为本申请的技术的实施方式的、具有推力面301的推力环320的俯视图,该推力面301具有与其耦合的多个多晶金刚石元件302。该实施方式中,推力面301安装有十二个多晶金刚石元件302,其分别具有接合表面322。

图3B所示为推力轴承组件300的侧视图,其包括与推力面304滑动接触的、图3A的推力面301,使得接合表面322与相对推力面304滑动接触,其由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料。

具有边缘弧度的多晶金刚石层

图4所示为本申请的技术的实施方式的示例性多晶金刚石元件402的侧视图。该例子中,多晶金刚石元件402包括由碳化钨基体426支承的多晶金刚石层424。在405处显示了金刚石-基体界线。

与多晶金刚石层424与碳化钨基体426之间的界面相对(即与金刚石-基体界线405相对),在多晶金刚石层424上形成接合表面422。接合表面422可以是磨光的、抛光的、高度磨光的、或高度抛光的多晶金刚石层424的顶表面。如图所示,从金刚石-基体界线405到接合表面422,沿着侧部边缘428,多晶金刚石层424具有相对较大的边缘弧度406。本领域技术人员应理解,本公开的多晶金刚石层不限于该特定形状,并且不限于被支承在碳化钨上或不限于被支承。

具有弓形边缘的多晶金刚石层

图5所示为本申请的技术的实施方式的示例性多晶金刚石元件502的侧视图。该例子中,多晶金刚石层524被碳化钨基体526支承,并且在金刚石-基体界线505与其对接。除了多晶金刚石层524具有与边缘弧度406相比更加呈弓形的边缘507以外,多晶金刚石元件502与多晶金刚石元件402基本相似。如本领域已知的,可以通过弓形边缘处理来提供多晶金刚石层524的弓形边缘507。还示出侧部边缘528。

具有大边缘弧度的多晶金刚石层

图6所示为本申请的技术的实施方式的示例性多晶金刚石元件602的侧视图。该例子中,多晶金刚石层624在金刚石-基体界线605处被碳化钨基体626支承。除了多晶金刚石层624具有大弧度边缘607以外,多晶金刚石元件602与多晶金刚石元件402基本相似。如本领域已知的,可以通过大弧度边缘处理来提供大弧度边缘607。还示出侧部边缘628。

具有更大边缘弧度的多晶金刚石层

图7所示为本申请的技术的实施方式的示例性多晶金刚石元件702的侧视图。该例子中,多晶金刚石层724在金刚石-基体界线705处被碳化钨基体726支承。除了多晶金刚石层724具有更大弧度边缘709以外,多晶金刚石元件702与多晶金刚石元件602基本相似,如本领域已知的,可以通过大弧度边缘处理来提供该更大弧度边缘709。该例子中,边缘弧度不是像多晶金刚石元件602的情况那样在多晶金刚石层724上开始的,而是在碳化钨基体726中在切点710开始的。还示出侧部边缘728。

具有多组件边缘的多晶金刚石层

图8所示为本申请的技术的实施方式的示例性多晶金刚石元件802的侧视图。该例子中,多晶金刚石层824在金刚石-基体界线805处被碳化钨基体826支承。多晶金刚石层824通过多组件边缘处理被处理,包括与倒角812连接的边缘弧度811,该倒角812与另一边缘弧度813连接。

因此,在一些实施方式中,本申请的推力轴承为高性能推力轴承,其中相对推力面的金刚石反应性材料被设置为与安装在另一推力面上的至少一个多晶金刚石元件滑动接触。推力面的一个或多个多晶金刚石元件优选为平面的,但可以是凸形的。此外,尽管优选三个或更多个多晶金刚石元件,但是本申请的技术可以以少到一个或两个多晶金刚石元件来实施。即使使用一个与相对金刚石反应性材料表面滑动接触的多晶金刚石元件,也可以减小推力轴承表面(推力面)之间的摩擦系数,并且可以消除或减少表面之间的磨损。

本公开的推力轴承的至少一些实施方式适用于在严酷环境中使用。与具有多晶金刚石-多晶金刚石接合的推力轴承相比,本公开的推力轴承的至少一些实施方式更不容易受到多晶金刚石破裂的影响。因此,本申请的技术所提供的推力轴承为适用于严酷环境的推力轴承,其与具有多晶金刚石-多晶金刚石接合的推力轴承相比,提供更高的服务价值。

边接触的避免

本公开的推力轴承的至少一些实施方式的关键性能标准为,以避免多晶金刚石轴承元件与由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料的相对组件(即相对推力面)之间的任何边接触的方式,构造(即定位、布置)一个或多个多晶金刚石轴承元件。实现该关键性能标准的一个优选的方法为,采用具有相对较大边缘弧度的多晶金刚石元件。多晶金刚石元件的边缘弧度使得,若推力面的一者或两者发生倾斜或错位,多晶金刚石元件的边缘弧度将对由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料的相对推力面呈现钝表面,而不是呈现会导致金刚石反应性材料的表面发生机械作用或切割或划刻的尖锐边缘。在不限制本公开的情况下,在某些实施方式中,传统上不优选倒角的多晶金刚石边缘处理。

图4-8显示和描述的多晶金刚石边缘处理提供使相应的多晶金刚石元件的原本平面(接合表面422、522、622、722、822)的边缘钝化的非限制性方法。平面的这种边缘钝化避免在相对推力面之间发生机械作用或切割,例如当多晶金刚石推力面(接合表面)或金刚石反应性材料的相对推力面出现倾斜或错位时。若发生这样的倾斜或错位,并且多晶金刚石元件的多晶金刚石层具有尖锐边缘930(如图9所示)而不是经处理的边缘,则尖锐边缘930可能会与相对推力面发生机械作用、切割或其他不希望的接合。图9的多晶金刚石元件902还示出接合表面922、侧部边缘928、多晶金刚石层924、金刚石-基体界线905、以及碳化钨基体926。

图10A和10B所示分别为使用经边缘处理的多晶金刚石元件和未经边缘处理的多晶金刚石元件。图10A示出了推力轴承组件1000a的一部分,示出了与推力环1003a(仅示出一部分)滑动接触的多晶金刚石元件1002a。图10A中,推力环1003a相对于多晶金刚石元件1002a是倾斜的或错位的,使得推力面1004a所界定的平面与接合表面1022a所界定的平面成一个角度。由此,推力面1004a与多晶金刚石元件1002a的边缘1050接合。

与图10A相似,图10B示出了推力轴承组件1000b的一部分,示出了与推力环1003b(仅示出一部分)滑动接触的多晶金刚石元件1002b。图10B中,推力环1003b相对于多晶金刚石元件1002b是倾斜的或错位的,使得推力面1004b所界定的平面与接合表面1022b所界定的平面成一个角度。由此,推力面1004b与多晶金刚石元件1002b的边缘1030接合。但是,由于多晶金刚石元件1002a经过边缘处理,因此与尖锐的边缘1030相比,边缘1050更钝。由于边缘1030是尖锐的,因此边缘1030可以与推力面1004b发生机械作用、切割或其他不希望的接合。但是,由于边缘1050是钝的,在图10A所示的实施方式中,这种机械作用或切割得以降低或消除。

在某些方面中,本公开的推力轴承包括多晶金刚石层,其具有为至少0.050”弧度的边缘弧度。在某些方面中,本公开的推力轴承包括多晶金刚石层,其具有为至少0.060”弧度、或至少0.070”弧度、或至少0.080”弧度、或至少0.090”弧度的边缘弧度。

多晶金刚石元件

在某些应用中,本公开的多晶金刚石元件在外侧多晶金刚石表面与支承的碳化钨团块之间具有钴含量增加的过渡层,这是本领域已知的。

多晶金刚石元件可以被碳化钨支承,或不被支承,为直接安装于轴承组件(例如推力环)的“独立的”多晶金刚石元件。

多晶金刚石元件可以通过非浸提、浸提、浸提并回填、热稳定、通过化学气相沉积(CVD)涂覆、或本领域已知的各种方式进行处理。

多晶金刚石元件–形状、尺寸和布置

多晶金刚石元件的直径可以小到3mm(约1/8”)或大到75mm(约3”),这取决于轴承的应用、构造和直径。通常,多晶金刚石元件的直径在8mm(约5/16”)与25mm(约1”)之间。

虽然多晶金刚石元件最常见的是圆柱形,但是应理解,本申请的技术可以用正方形、矩形、椭圆形、本文中参照附图描述的任何形状、或本领域已知的任何其他合适的形状来实施。

在一些应用中,在沿着轴承组件(即推力环)的环中部署多晶金刚石元件。本技术的多晶金刚石轴承元件可以在沿着部署的推力面的环中部署。一个非限制性示例为,五个平面多晶金刚石轴承元件的环,用于与由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料的相对推力面接合。不受理论的束缚,具有多晶金刚石推力面-多晶金刚石推力面(相对于多晶金刚石推力面-金刚石反应性材料推力面)的、可比较的推力轴承可能总共需要大于20个或甚至30个多晶金刚石元件来承受轴向负荷。因此,本申请的技术的一些实施方式提供多晶金刚石推力轴承,与具有多晶金刚石推力面-多晶金刚石推力面接触的推力轴承所能实现的相比,其在单个多晶金刚石元件之间具有更大的间距。通过本申请的技术,多晶金刚石元件可以以任何模式、布局、间距或交错布置来提供所需的支承,而不必担心需要与相对轴承面上多晶金刚石表面的重叠接触。

多晶金刚石元件-安装

如上文所述,多晶金刚石元件可以通过本领域已知的方法直接安装于轴承元件(例如推力环)上,包括但不限于钎焊、胶合、压配、收缩配合或螺纹。多晶金刚石元件可以安装于单独的一个或多个环中。一个或多个环可以通过本领域已知的方法部署于轴承元件上,包括但不限于胶合、压配、螺纹锁固或钎焊。

平面的或拱形的多晶金刚石元件可以以这样的方式安装,即使其围绕其自身的轴旋转。参考授予Shen等人的美国专利号8,881,849,作为一种非限制性示例,该方法允许多晶金刚石元件在与对象材料面接触时围绕其自身的轴旋转。

相对接合表面的处理

在一些方面中,金刚石反应性材料的相对接合表面被碳预饱和(例如在与接合表面接合之前)。这样的预饱和降低金刚石反应性材料通过多晶金刚石的表面石墨化而吸引碳的能力。金刚石反应性材料表面接触区域的预饱和可以通过本领域已知的方法实现。

在某些应用中,通电或不通电的固态润滑剂源(例如石墨或六方氮化硼棒或内含物)与由至少一些金刚石反应性材料形成或包括至少一些金刚石反应性材料的相对接合表面接触。

在润滑的环境中,轴承组件可能会受益于润滑剂的流体动力作用,在轴承组件的移动和固定元件之间产生间隙。

示例性测试

为了开发一种坚固的凸轮从动件接口,以供申请人先前引用的美国专利申请第15/430,254号(“254号申请”)中的“钻孔机”使用,申请人设计并建造了一个先进的试验台。试验台采用200RPM齿轮电动机,在硬面铁质定子壳体内驱动硬面铁质转子芯轴。芯轴在其长度的中途装有非硬面偏置凸轮圆柱体。通过使用正置换泵向转子/定子组件输送循环流体。候选凸轮从动件界面机构与转子芯轴的凸轮圆柱体密封接触并承受负荷。使用测试台,在清水或含砂钻井液中,在500~3000lbf的负荷下测试候选界面机构的耐受能力和磨损。

申请人对与抛光的多晶金刚石表面滑动接触的铁制凸轮圆柱体进行了测试,没有有害作用或明显的化学相互作用。与所谓的超硬材料相比,至少一些金刚石反应性材料(例如铁质材料)因其易于获得、易于成形和机械加工、较高的弹性以及较低的成本,因而对轴承应用具有吸引力。

申请人进行的测试程序已经确定,即使在相对较高的负荷和较高的RPM速度下,也可以成功地在轴承应用中采用多晶金刚石和金刚石反应性材料之间的负荷界面。

一个关键的发现是,只要不使多晶金刚石元件与金刚石反应性材料发生边接触或点接触(其被认为可以导致机械作用和化学相互作用),那么多晶金刚石就可以以许多应用中所要求的典型的轴承负荷和速度与金刚石反应性材料发生滑动接触。申请人的测试出乎意料且令人惊讶的成功令新型高性能向心轴承的开发得以实现。

测试程序包括在旋转条件下与平面多晶金刚石接触的高负荷表面线性区域内的弯曲铁质表面的测试。该测试在PDC的表面上沿多晶金刚石的整个1/2”宽面产生了轻微变色的宽度约为0.250”的赫兹接触区域。接触区域的宽度可以通过凸轮偏移、系统中的振动以及负荷下铁类金属的轻微变形来解释。据估计,在任何给定的时间点,在1/2”多晶金刚石元件表面上的总接触区域约为多晶金刚石元件表面的总面积的7%或更少。测试中使用的构造表明,即使多晶金刚石元件表面上的小的表面积也能承受很大的负荷。

球形铁质球在负荷下以及相对于平面多晶金刚石表面旋转的情况下进行的额外测试在多晶金刚石元件的中心产生了一个较小的、直径约0.030的变色赫兹接触区域。如上述接触的解释中所述,可以相信,在不受理论限制的情况下,变色的直径是由于测试设备中的轻微振动和负荷下铁类金属的轻微变形所导致的结果。

下表2列出了总结申请人对滑动界面的各种构造进行的测试的数据。

表2

测试1和2总结了单个钢球在负荷下在钢杯中滚动的失败的测试。测试3总结了由钢杯中单个抛光的PDC元件支承钢球的更成功的测试结果。测试4总结了由钢杯中三个抛光的多晶金刚石元件的阵列支承单个钢球的非常成功的测试。测试5到9总结了越来越严格的测试,每个测试都是与旋转的铁质金属凸轮表面滑动接触的单个抛光的多晶金刚石元件。测试10总结了单个抛光的多晶金刚石元件与单个未抛光的多晶金刚石元件的对比测试,每个元件都与旋转的铁质金属凸轮表面滑动接触。最终测试显示,当使用未抛光的多晶金刚石元件时,摩擦系数显著增加。表2所列出的条件和结果象征着多晶金刚石在金刚石反应性材料上的潜在用途,不应被视为限制或完全涵盖本申请的技术。

测试总结

不受理论的束缚,在操作中,在液体冷却的、润滑的环境中运行凸轮和凸轮从动件,可以实现更高的速度和负荷,而不会发生热化学反应。此外,已被抛光的多晶金刚石表面尤其提供更低的热化学响应。

根据上面提供的描述和附图,可以容易地理解,本申请的轴承组件技术可以用于广泛的应用中,包括在井下环境中的那些。本文提供的技术另外还广泛地应用于其他工业应用。

此外,尽管相对于推力轴承组件的表面之间的接合进行了显示和描述,但是本领域技术人员应理解,本公开不限于该特定应用,并且本文公开的概念可以应用于与金刚石材料的表面接合的任何金刚石反应性材料表面之间的接合。

尽管已经详细描述了本发明的实施例和优点,但是应当理解,在不脱离本公开的精神和范围的情况下,可以在本文中进行各种改变、替换和变更。而且,本申请的范围不旨在限于说明书中描述的过程、机器、制造、物质组成、手段、方法和步骤的特定实施方式。本领域的普通技术人应从公开内容中容易地理解,目前存在或今后将要开发的、执行与本文相应实施方式基本相同的功能或实现基本相同的结果的过程、机器、制造、物质组成、手段、方法或步骤可以根据本公开来使用。因此,所附权利要求旨在将这样的过程、机器、制造、物质组成、手段、方法或步骤包括在其范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号