首页> 中国专利> 一种存在颗粒污染物沉降情况的污染源逆向辨识方法

一种存在颗粒污染物沉降情况的污染源逆向辨识方法

摘要

本发明公开了一种存在颗粒物沉降情况的污染源逆向辨识方法,属于空气污染监测和源辨识技术领域。本发明在逆向溯源过程中考虑了大颗粒污染物的沉降现象,使用漂移通量模型模拟颗粒污染物的沉降过程,结合伴随概率方法进行污染源的逆向计算。首先获取目标区域内待检测污染源的污染类型,明确颗粒污染物粒径及是否存在物理沉降现象;建立待测区域的数值模型;根据气象站数据模拟待测区域的流场;使用污染物浓度监测装置读取测点位置和污染物浓度数据;通过伴随方法结合漂移通量模型进行污染源的逆向辨识。此种方法特别针对于对物理沉降现象明显的大粒径颗粒污染物,提高了污染源监测的准确性,并实现了对污染源监测的快速准确辨识。

著录项

  • 公开/公告号CN112347712A

    专利类型发明专利

  • 公开/公告日2021-02-09

    原文格式PDF

  • 申请/专利权人 大连理工大学;

    申请/专利号CN202011200038.5

  • 发明设计人 薛雨;顾钦子;王祎;葛凡;翟志强;

    申请日2020-10-30

  • 分类号G06F30/28(20200101);G06Q50/26(20120101);G01N15/06(20060101);G01N15/04(20060101);G06F113/08(20200101);G06F119/14(20200101);

  • 代理机构21200 大连理工大学专利中心;

  • 代理人戴风友

  • 地址 116024 辽宁省大连市甘井子区凌工路2号

  • 入库时间 2023-06-19 09:51:02

说明书

技术领域

本发明属于空气污染监测和源辨识技术领域,具体涉及一种存在颗粒污染物沉降情况的污染源逆向辨识方法。

背景技术

时代发展过程中空气污染也愈加严重。在空气污染事件中,能否根据临时监测数据对污染源的位置进行快速识别,对于空气污染源的控制管理以及改善空气质量意义重大。对于空气未知污染源的识别已有较多的研究。现有的污染源识别方法主要分为两大类:正向计算方法和逆向计算方法。正向计算方法主要是一种试错方法,这一种方法往往效率较慢。而逆向模拟方法是结合气象过程,逆向运用空气质量模式,获得污染源的时间和空间分布,可以结合计算流体力学通过模拟计算快速确定污染源的位置及释放强度。

现有专利:一种利用固定位置污染物探测器辨识城市空间多污染物源的方法(授权公告号CN106650017A)采用基于概率论的伴随方法,在稳定流场中通过有限个固定位置污染物探测器做到对城市多个污染源的快速辨识。该发明通过引入伴随算子求解流场伴随方程,在逆向求解污染源的过程中具有较大的优势。该发明的缺陷在于:没有考虑到颗粒污染物的物理沉降效应,导致该发明只适用于沉降效果不明显的污染物(如NO

因此,针对上述问题,本发明进一步完善了用于城市空间的多污染物源辨识的伴随方法,考虑了大粒径空气污染物在污染物扩散中的沉降现象,在计算过程中融入了漂移通量模型,提出了一种在存在颗粒污染物沉降情况下的空气污染源辨识方法,使源辨识结果更加准确和符合实际。

发明内容

本发明的主要目的在于解决颗粒污染物污染源的快速辨识问题,以及解决专利(授权公告号CN106650017A)没有考虑到大颗粒污染物物理沉降的缺陷。提出一种存在颗粒污染物物理沉降情况下的污染源逆向辨识方法。

本发明的技术方案:

一种存在颗粒污染物沉降情况的污染源逆向辨识方法,步骤如下:

步骤一,建立待测区域建筑的三维模型,求解纳威斯托克斯方程得到流场数据;

步骤二,确定待测区域存在颗粒污染物沉降情况,通过化学成分判定及物理测量手段明确待测污染物种类和粒径;

步骤三,建立欧拉模型,将待计算颗粒污染物的重力沉积效应整合到污染物传播标量方程实现颗粒物的沉降模拟,颗粒物沉降与流体之间形成速度差,将其编入标量方程对流项与流体的矢量速度相加,此时污染物传播标量方程改进为:

其中,

步骤四,获得三个不同监测站位置L及污染物浓度数据C,计算污染物传播方程的伴随方程:

其中,ψ

得出各个探测器辨识到的污染源可能存在的位置,上述得出的可能源位置无限多,通过公式(1-5)将三个探测器辨识结果整合,即确定唯一一个可能的污染物源:

其中,N为探测数据的个数,

其中,

通过将步骤四中所选取的三个测点对应信息带入公式(1-1)所示的改进的污染物传播标量方程和公式(1-2)至公式(1-6)所示的伴随方程求解,得到污染源的第一个可能位置S1(1)和释放强度C1(1);

步骤五,实地检测S1(1)位置是否存在污染源,若寻得污染源,则第一次寻源成功,定位结束;若实地检测S1(1)位置不存在污染源,则在S1(1)的下风向重新选取三个测点进行计算,直到在此原则下的计算所得可能源位置处找到真实源;

步骤六,关停S1或在原浓度数据上减去S1浓度贡献值,在测试区域内去除S1的影响,若去除S1影响后余下的浓度皆低于限值,说明所有的污染源皆已找到,寻源结束;若去除S1影响后余下的浓度仍然超过限值,说明还存在其他污染源,在去除已知污染源影响的数据中重新选取测点,重复步骤四至步骤五,直到所有污染源都被找到。

其中,在步骤三中研究的颗粒物沉降形成的与流体之间的速度差是由粒子拖曳力和重力引起的粒子和空气的速度差异,这对于具有高惯性的大粒径颗粒物起主要作用。公式(1-1)中污染物颗粒物的沉降速度

其中g是重力加速度,d

根据计算结果,最终沉降速度随粒径的增加而迅速增加,与粒径的平方成正比;且斯托克斯区的沉降速度与粘度成反比,并且不会取决于气体的密度。

其中,在步骤三中数据测量可以使用监测站点、传感器、污染物监测仪、便携污染物探测设备的监测数据,但需要明确所使用仪器的测量误差,便于公式 (1-6)中污染物探测器的测量误差的标准平方差

本发明的有益效果:本发明在正常情况下的污染源逆向辨识基础上进一步考虑了颗粒污染物的沉降效应,扩宽了可应用的污染物种类,在模拟计算中更大的还原了实际流场和污染物传递的情况,更贴近现实情况,计算结果更加准确;

附图说明

图1为本发明提供的一种空气污染监测方法的流程示意图。

图2是本发明实施例中工业区模型图。

图3是本发明实施例中工业区在主导风速和风向作用下速度场分布。

图4为本发明实施例中工业区案例中测点位置及定位结果俯视图。

图5为本发明实施例中工业区案例中测点位置及定位结果正视图。

图6为本发明实施例中工业区案例考虑粒子沉降与不考虑粒子沉降计算结果对比。

图中:1气体污染源;2定位源;3真实来源位置;4测点。

具体实施方式

以下结合附图和技术方案,进一步说明本发明的具体实施方式。

图1为颗粒物物理沉降情况下的污染源逆向辨识方法的流程示意图。本发明为逆向方法,借助计算流体力学对待测区域流场和污染物场进行逆向模拟计算。并在计算流体力学求解器中编入漂移通量项,在流体运动的垂直方向上添加颗粒污染物的沉降速度,再使用伴随方法通过求解质量传递方程的伴随方程,结合概率理论求取污染物源位置和释放强度在整个空间区域和释放强度坐标上的概率分布,得到的概率值最大的点所对应的位置和强度为辨识出的污染物源的位置和强度。本发明在伴随概率算法的基础上结合了漂移通量模型,进一步完善了理论计算与实测相结合的过程。

实施例:以一个简单的三维工厂为例,工厂模型几何尺寸为 1150m×430m×500m,出口和入口尺寸均为430m×500m,入口流速为0.3m/s。考虑只有一个污染源的情况,且污染源位于排污烟囱处,污染物为粒径10μm的颗粒物,污染物可立密度取土壤密度1400kg/m

步骤一,建立待测区域建筑的三维模型,如图2,求解纳威斯托克斯方程得到流场数据,如图3;

步骤二,明确颗粒污染物污染物种类为PM10,粒径为0.00001m,存在颗粒物沉降现象;

步骤三,将PM10的重力沉积效应整合到标量方程中来实现颗粒物的沉降模拟,将颗粒物沉降形成的漂移通量项编入标量方程对流项,此时漂移通量模型为:

其中,

其中,污染物颗粒物的沉降速度

其中g是重力加速度,取9.81m/s

步骤四,获得三个不同监测站位置L及污染物浓度数据C,将每个测点的数据带入污染物传播方程的伴随方程:

其中,ψ

得出各个探测器辨识到的污染源可能存在的位置,上述得出的可能源位置无限多,通过公式(1-5)将三个探测器辨识结果整合,即确定唯一一个可能的污染物源:

其中,N为探测数据的个数,

其中,

通过将步骤四中所选取的三个测点对应信息带入公式(1-1)所示的漂移通量模型和公式(1-2)至公式(1-6)所示的伴随方程求解,得到污染源的第一个可能位置S1(1)和释放强度C1(1);

步骤五,实地检测S1(1)位置是否存在污染源,若寻得污染源,则第一次寻源成功,定位结束;若实地检测S1(1)位置不存在污染源,则在S1(1)的下风向重新选取三个测点进行计算,直到在此原则下的计算所得可能源位置处找到真实源;

步骤六,关停S1或在原浓度数据上减去S1浓度贡献值,在测试区域内去除S1的影响,若去除S1影响后余下的浓度皆低于限值,说明所有的污染源皆已找到,寻源结束;若去除S1影响后余下的浓度仍然超过限值,说明还存在其他污染源,在去除已知污染源影响的数据中重新选取测点,重复步骤四至步骤五,直到所有污染源都被找到。本算例只有一个污染源,逆向计算一次即能够找到所有污染源,计算结果如图4及图5所示,计算得污染源位于工厂烟囱位置,误差较小,结果与实际情况相近。

本方法适用于有如下特定情境:

(1)流场可以使稳态的也可以是非稳态的,本研究需要气象站获取的气象数据或实时监测风向风速等数据,来模拟计算城市空间变化的流场。

(2)污染物源是释放强度恒定的点源。基于概率的伴随方法只能逆向辨识点源型(或者可以作为点源来考虑)的污染物源,线源和面源不在本研究的讨论范围之内。

(3)污染物是惰性污染物。为了方便起见,本研究只针对惰性污染物,如- 果要进一步考虑可与空气中其它物质反应的污染物,只要能够模拟计算准确,此方法同样适用。

(4)污染物浓度达到一定的限值才认为有害,才必须搜寻到相应的污染源。

(5)测点处污染物浓度测量仪器能够探测到特定种类的污染物,并记录污染物浓度及位置等信息,若为非稳态流场,则还需要记录测得该浓度数值时相应的时间。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号