首页> 中国专利> 一种圆窗龛内固定式作动器及其固定装置

一种圆窗龛内固定式作动器及其固定装置

摘要

本发明涉及一种圆窗龛内固定式作动器,包括套管、固定支撑装置和伸缩装置:套管前端设有周向隔板,后端设有夹持台;固定支撑装置包括设置在套管外侧的膨胀套和位置固定螺母,位置固定螺母通过螺纹副与套管相螺接,膨胀套一端抵住位于套管前端的隔板,另一端抵住位置固定螺母;伸缩装置包括设置在套管内侧的位置调整螺栓、伸缩器和激励膜。本发明还涉及一种用于圆窗龛内固定式作动器的固定装置,包括箱体、第一旋钮、第二旋钮、夹持臂、拧紧轮、转轴、支脚和减速齿轮组,用于将上述作动器固定在使用对象的圆窗龛处,解决了现有圆窗激振式作动器植入困难,支撑刚度较小且支撑不稳定,初始压力不能控制的问题,可广泛应用于助听器设备技术领域。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-07-17

    授权

    授权

  • 2019-01-15

    实质审查的生效 IPC(主分类):H04R25/00 申请日:20180711

    实质审查的生效

  • 2018-12-21

    公开

    公开

说明书

技术领域

本发明涉及助听设备技术领域,具体是指一种圆窗龛内固定式作动器及其固定装置。

背景技术

听力损伤是影响人类日常生活的常见疾病之一,根据听力损伤的机理不同,听力损伤又分为传导性听力损伤和感音神经性听力损伤。随着耳科学研究的不断加深以及耳显微外科手术的迅速发展,多数传导性听力损伤患者都可以通过手术改善听力,但目前对于感音神经性听力损伤一般还是采用佩戴传统助听器的方式改善听力。然而传统助听器具有输出增益小(无法补偿高程度的听力损伤)、伴有声反馈、耳道堵塞等问题,很多患者不愿意佩戴,外耳道易感染者更是无法佩戴。为此,国内外很多研究机构竞相研究植入式助听装置,人工中耳便是其中的一种。

人耳主要由外耳、中耳、内耳三部分组成,正常人耳感声首先由外耳的外耳廓将声音收集到外耳道,引起耳膜振动;再随之带动中耳的锤骨运动,传向砧骨、镫骨;镫骨通过其底板将振动能量透过耳蜗卵圆窗传给内耳的耳蜗;耳蜗通过其内部的淋巴液与基底膜的流固耦合作用,及外毛细胞的主动放大功能(对基底膜感应的微小振动进行主动放大),使耳蜗内的内毛细胞感应输入的振动能量,产生神经脉冲并传给听觉神经,进而使人听到声音。感音神经性听力损伤主要是外毛细胞损坏,而无法放大输入的微弱振动信号,使患者无法听到外部低声强的声音。助听装置就是通过将微弱声信号在输入耳蜗前,针对性地放大来使患者能够听到,进而补偿患者听力损伤。

人工中耳主要由麦克风、信号处理单元、电源及植入体内的作动器四部分组成。其中,作动器通常耦合作用在中耳的听小骨上,如砧骨体、砧骨长突、镫骨等。其工作过程如下:麦克风首先将声音采集,转化为电信号传给信号处理单元;信号处理单元根据患者听力损伤情况,对信号进行相应的放大等处理后再将信号输出到作动器;作动器在该驱动电信号的作用下,做机械运动,驱动其作用的耳内组织。最终,将振动能量通过耳蜗的卵圆窗输入内耳中的耳蜗,实现听力补偿的目的。相比通过声音激励来补偿听力损伤的传统助听器,人工中耳这种采用机械激振的方案具有不堵塞耳道、无声反馈、语音清晰度高和高频增益强等优点,弥补了传统助听器的不足。

如前所述,传统人工中耳植入体内的作动器作用在听小骨上,需要患者听骨链完好。然而,很多患者还伴有听骨链畸形、听骨链腐蚀等病变,无法提供完好的听小骨,进而使得传统人工中耳无法植入。针对该问题,现有技术中存在这种手段:在临床植入时避开听骨链,将人工中耳的作动器直接植入在患者耳蜗的另一入口——圆窗处,通过作动器机械激振圆窗膜来补偿听力,并取得了良好的临床效果。这种圆窗激振的植入方式,拓展了传统人工中耳的治疗领域,使它不仅能治疗中重度感音神经性耳聋,还能够治疗伴有鼓室或听骨链异常(如先天性外中耳畸形、中耳炎引起的听小骨腐蚀等)的感音神经性耳聋。然而,临床应用显示,这种圆窗植入方式使人工中耳术后听力补偿效果不稳定,个体差异较大,且补偿效果低于理论预估值。研究表明,这些临床上出现的问题主要是因为这种作动器不是针对圆窗激振方式设计。一方面,是因为其作用端相对于圆窗过大,不能与圆窗膜有效耦合,进而不能把振动能量有效地输入到耳蜗,使其听力补偿效果低于理论设计值。其作用端过大还要求植入时充分暴露圆窗膜,即要磨除圆窗龛部分骨质,增大了手术植入过程的复杂程度,手术操作非一般耳鼻喉科医生可以掌握。另一方面,因为其没有支撑结构,临床上仅仅通过手术在后面垫入筋膜来支撑。这种筋膜支撑无法提供足够的支撑刚度,且其支撑的程度受手术影响较大,不能在患者间提供相对稳定的支撑刚度,进而产生患者间补偿效果个体差异大;与此同时,这种筋膜支撑不稳定,在临床上甚至出现了振子脱落的病例,使得患者术后效果不稳定。此外,研究显示,作动器作用端与圆窗膜间初始压力也影响其听力补偿性能。而这种作动器无法控制初始压力,这也造成了其术后听力补偿性能的个体差异较大。

发明内容

为解决上述技术问题,本发明提供的技术方案为:一种圆窗龛内固定式作动器,包括套管、固定支撑装置和伸缩装置:

所述套管前端周向设置弧形隔板,后端设置夹持台,且所述套管用来为固定支撑装置和伸缩装置提供支撑;

所述固定支撑装置包括位于套管外侧的膨胀套和位置固定螺母,所述膨胀套一端抵住套管前端的隔板,另一端抵住位置固定螺母,所述位置固定螺母与套管螺接,且所述固定支撑装置用来和套管相互作用将作动器固定于圆窗龛内部骨壁上;

所述伸缩装置包括位于套管内侧的位置调整螺栓、伸缩器和激励膜,所述位置调整螺栓的杆部螺接在套管内侧,用来调整伸缩装置输出端与圆窗膜之间的距离及初始压力;所述伸缩器位于套管内部,且所述伸缩器的后端与位置调整螺栓相连接;所述激励膜作为伸缩装置的输出端而覆于伸缩器的前端,且所述激励膜从套管前端伸出并作用于圆窗膜。

优选地,所述夹持台设置为沿轴线方向分布的方形平台结构,且对称设置在套管上下两侧。

优选地,所述膨胀套设为柔性铰链结构,其内外两面均设有若干凹槽,在所述膨胀套上还设有若干呈圆形分布的弧形支撑臂。

优选地,所述膨胀套设为弹性片结构,并呈多对相对组合排列,且膨胀套外缘设有若干槽口以形成多个齿片,所述齿片宽度大于槽口宽度,所述膨胀套两端设有套筒。

优选地,所述位置固定螺母母体外侧为圆柱型,且四周设有直齿。

优选地,所述位置调整螺栓头部设为带有直齿的圆柱型,其中心设有轴向通孔,且所述位置调整螺栓采用弹簧垫圈防松。

优选地,所述伸缩器由压电叠堆实现。

本发明还提供一种技术方案:一种用于圆窗龛内固定式作动器的固定装置,包括箱体、第一旋钮、第二旋钮、夹持臂、拧紧轮、转轴、支脚和减速齿轮组,所述第一旋钮和夹持臂组成夹持机构,所述第二旋钮和转轴组成拧紧机构;

所述第一旋钮位于箱体上部且位于侧面位置,所述第二旋钮位于箱体上端面位置,所述夹持臂和转轴依次设置在箱体下部位置,且二者相互垂直;所述夹持臂基部设为蜗轮结构,且对称分布于蜗杆两侧并与之啮合;所述第一旋钮通过传动轴一驱动蜗杆,所述涡轮和蜗杆设为反向自锁结构;

所述减速齿轮组设置在箱体上部,并与第一旋钮啮合,而后经传动轴二驱动转轴;所述转轴且伸出箱体部分轴径变小,在所述转轴伸出箱体部分上设有轴向导向肋,其内端设有轴肩,外端螺接周向弧形挡板,且所述转轴伸出部分两端均设有定位槽;所述拧紧轮上设有与导向肋适配的槽口,且所述拧紧轮上设有定位螺钉;

所述支脚对称分布于箱体底部的两侧,用来在作动器的植入过程中抵住圆窗龛附近骨质。

优选地,所述减速齿轮组包括位于第二旋钮下部的直齿轮组和伞齿轮组,所述直齿轮组包括轴接在箱体上且同轴设置的第一直齿轮和第二直齿轮以及第三直齿轮,所述第一直齿轮啮合在第二旋钮下部,所述第三直齿轮啮合在第二直齿轮下部;所述伞齿轮组包括相互啮合的第一伞齿轮和第二伞齿轮,所述第三直齿轮和第一伞齿轮同轴设置。

优选地,所述箱体设置为长方体结构,且其内部设有若干隔板。

本发明与现有技术相比的优点在于:(1)固定式作动器采用圆窗龛内固定的方法,使作动器通过机械结构固定在圆窗龛内部,相比于现有临床上采用弹性模量相对较小的筋膜抵住作动器后端的简单固定方式来说,提高了作动器的支撑刚度,减小了作动器输出量的损耗,进而提升了作动器听力补偿效果;此外,现有临床上采用的筋膜固定作动器方法,仅仅是筋膜包住作动器底部,作动器支撑不稳定,这种不稳定使作动器容易在内部倾斜,造成作动器输出端不再垂直作用于圆窗膜,降低了其听力补偿效果,甚至导致作动器脱落现象发生,而本发明的机械固定避免了上述筋膜固定的不稳定问题,降低了术后患者听力补偿效果个体差异较大的可能;

(2)现有临床上通过筋膜固定作动器,无法有效控制作动器输出端与圆窗膜间的接触程度,而研究显示这种接触程度不同带来的初始压力变化影响作动器听力补偿效果,本发明的作动器可通过调节位置调整螺栓来控制作动器与圆窗膜间的接触,进而提高作动器的听力补偿性能;

(3)本发明作动器的手术植入过程中无需磨除圆窗龛,降低了手术的难度,有利于减小植入创伤与术后的恢复,且降低了术后因内耳创伤所引发并发症的可能性;

(4)本发明膨胀套采用柔性铰链型膨胀套或弹性片型膨胀套,有一定的弹性,在旋松位置固定螺母时,膨胀套能够恢复原来形状,拆卸时直接将作动器从圆窗龛取出,能够在不损伤圆窗龛的情况下实现对作动器的安装、替换或拆卸工作。

附图说明

图1为表示人耳结构示意图;

图2表示圆窗龛内固定式作动器植入示意图;

图3是本发明实施例一的结构示意图;

图4是本发明实施例一的植入示意图;

图5是本发明伸缩装置的结构示意图;

图6是本发明套管的结构示意图;

图7是本发明实施例一的固定支撑装置的结构分解示意图;

图8是本发明实施例二的结构示意图;

图9是本发明实施例二的植入示意图;

图10是本发明实施例二的固定支撑装置的结构分解示意图;

图11是本发明固定装置的结构示意图;

图12是本发明固定装置转轴伸出部的结构分解示意图;

图13是本发明阻抗测量示意图。

具体实施方式

下面结合附图对本发明做进一步的详细说明。

结合图1~2,在正常听觉系统中外部声音经耳道1传达至鼓膜2,引起人耳系统中鼓膜20和听骨链的振动,听骨链由三块微小互联的听小骨组成,即锤骨3、砧骨4和镫骨5,进而由听骨链的镫骨5将振动传入内耳中的耳蜗7;耳蜗7通过内部淋巴液与基底膜的流固耦合作用,及外毛细胞的振动放大(对基底膜感应的微小振动进行主动放大),使耳蜗7内的内毛细胞感应鼓膜2及听骨链输入的机械能,最终由内毛细胞将机械运动转化为神经脉冲并传给听觉神经,进而产生声音。

本发明采用逆向激励的听力补偿方式,将该圆窗龛内固定式作动器10固定在圆窗龛6内直接激励圆窗膜8,使它不仅能治疗中重度感音神经性耳聋,还能够治疗伴有鼓室或听骨链异常如先天性外中耳畸形、中耳炎引起的听小骨腐蚀等的感音神经性耳聋。

实施例一:

结合附图3~7,一种圆窗龛内固定式作动器,该装置通过激励患者的圆窗膜来补偿听力损失,包括伸缩装置20、固定支撑装置40和套管30:

套管30前端设有周向隔板,后端设有夹持台31,夹持台31为套管30后端外侧沿轴线方向切割出的方形平台,且方形平台对称设置在套管30两侧,在实际工作中,套管30起到支撑伸缩装置20和固定支撑装置40的作用;

伸缩装置20包括依次设置在套管30内侧的位置调整螺栓21、伸缩器和激励膜23,激励膜23从套管30前端伸出并作用于圆窗膜8,且激励膜23采用接近于筋膜的生物相容性材料制作;伸缩器设为压电叠堆22,压电叠堆22位于套管30内部,其后端与位置调整螺栓21相连接;位置调整螺栓21的杆部与套管30内侧通过螺纹副相连接,其头部为圆柱型,且四周设有直齿,便于拧紧;位置调整螺栓21采用弹簧垫圈60防松,其外表面镀有生物相容性材料层,中心位置设有轴向通孔,以便于通过压电叠堆22的连接导线;在具体使用时,旋转位置调整螺栓21,伸缩装置20整体转动,调节位置调整螺栓21位于套管30中的位置,进而调整伸缩装置20输出端与圆窗膜8之间的距离及初始压力,在这个过程中,压电叠堆22将电信号转变为压电材料的形变,直接激励圆窗膜,对听力损伤的患者进行听力补偿;

固定支撑装置40包括设置在套管30外侧的位置固定螺母41和柔性铰链型膨胀套42,位置固定螺母41通过螺纹副固定在套管30外侧,位置固定螺母41为圆柱型,且四周设有直齿,便于拧紧;柔性铰链型膨胀套42一端抵住套管30前端的隔板,另一端抵住位置固定螺母41,柔性铰链型膨胀套42在内外两面设有若干凹槽43,柔性铰链型膨胀套42切割有若干周向分布的支撑臂44;在具体使用时,支撑臂44在初始状态时向外侧张开一定高度,以便于植入时支撑臂44的打开,借助于套管30前端的隔板,通过旋进位置固定螺母41调整其位于套管30上的位置,使得柔性铰链型膨胀套42在受到位置固定螺母41挤压时,支撑臂44往外侧变形张开,固定在圆窗龛6内部骨壁上,从而将整个作动器固定于圆窗龛6内部骨壁上。在实际加工制作时,固定支撑装置40和套管30均由钛合金材料制成。

实施例二:

结合说明书附图8~10,本圆窗龛内固定式作动器将实施例一中的固定支撑装置40替换为包括位置固定螺母41、套筒51和弹性片型膨胀套52的固定支撑装置50,弹性片型膨胀套52呈多对组合排列,弹性片型膨胀套52外缘切割有若干槽口53并形成若干齿片54,齿片54宽度大于槽口宽度53,弹性片型膨胀套52两端设有套筒51,便于将弹性片型膨胀套52卡在合适的轴向位置,其他技术方案与实施例一相同。

结合附图11~12,本发明还提供了一种针对圆窗龛内固定式作动器的固定装置100,包括箱体130、第一旋钮110、第二旋钮120、夹持臂160、拧紧轮140、转轴150、支脚170和减速齿轮组;第一旋钮110和夹持臂160组成夹持机构,第二旋钮120和转轴150组成拧紧机构:

箱体130为长方体结构,顶部侧面设有第一旋钮110,顶面设有第二旋钮120,其底部为阶梯状,依次设有夹持臂160和转轴150,夹持臂160与转轴150垂直,即夹持臂160垂直于作动器轴向进行夹持,转轴150沿作动器轴向对其调节;夹持臂160有两个,其基部为蜗轮结构,夹持臂160呈对称位置分布于蜗杆两侧并与之啮合,夹持臂160在蜗杆的带动下绕蜗轮中心转动,从而控制夹持臂160的张合;

第一旋钮110通过一传动轴驱动蜗杆,通过调节第一旋钮110,能够驱动夹持臂160使其夹紧夹持台31,且夹持臂160基部的蜗轮蜗杆机构能够反向自锁,为夹持臂160提供可靠的夹持力;

第二旋钮120旋转时经设置在箱体130顶部内的减速齿轮组11进行降速,然后经另一传动轴驱动转轴150,转轴150伸出箱体130的部分为转轴130伸出部,在转轴130伸出部的外侧部分轴径变小;轴头轴向设有导向肋151,内端设有轴肩,外端设有周向挡板153,挡板153中心通过螺钉与轴头相连接,轴头两端分别设有定位槽152;

拧紧轮140上设有与导向肋151适配的槽口,使得其能够沿转轴150伸出部的轴头轴向滑动且不会产生相对转动,拧紧轮140上设有定位螺钉141;当拧紧轮140抵住轴头的外端挡板153时,将定位螺钉141拧入对应的一端定位槽152,用于啮合位置固定螺母41,此为第一位置,以调节固定支撑装置40;当拧紧轮140抵住轴头的内端轴肩时,将定位螺钉141拧入对应的另一端定位槽152,用于啮合位置调整螺栓21,此为第二位置,以调节伸缩装置20,拧紧轮140在换位时可从夹持臂160中间穿过;

减速齿轮组11包括位于第二旋钮120下部的直齿轮组和伞齿轮组,直齿轮组包括轴接在箱体130上且同轴设置的第一直齿轮111和第二直齿轮112以及第三直齿轮113,第一直齿轮111啮合在第二旋钮120下部,第三直齿轮113啮合在第二直齿轮112下部;伞齿轮组包括相互啮合的第一伞齿轮114和第二伞齿轮115,第三直齿轮113和第一伞齿轮114同轴设置;

支脚170设置为两个,分别放置于箱体130底部的两侧,用于在作动器的植入过程中抵住圆窗龛6附近骨质,避免固定装置100抖动。

如附图13所示,是本圆窗龛内固定式作动器的阻抗测量示意图,使用美国OTOLOGICS公司研发的Transducer Loading Assistant(TLA)设备监测伸缩装置20输出端对圆窗膜8的初始压力。压电叠堆22使用导线经适配器(Adapter)与TLA相连,TLA的工作原理与LCR测量仪相同,由于压电叠堆22在负载下的阻抗曲线由其本身的特性如质量、阻尼以及负载的弹簧刚度共同决定,因此TLA设备通过测量电信号的变化可以确定压电叠堆22的负载程度。在工作时,TLA会发射一定频率的电压信号对系统进行测试,TLA设备包括两个显示屏幕,其一显示屏会显示1kHz处的作动器电感,另一显示屏会显示初始的作动器阻抗,以及测量到的直流电阻;根据TLA测量到的电感和阻抗的曲线变化,可以确定伸缩装置20输出端与圆窗膜8之间的接触程度,以保证其达到理想的耦合状态。

本发明作动器的手术植入过程为:首先将压电叠堆22使用导线经适配器与美国OTOLOGICS公司研发的Transducer Loading Assistant设备相连,通过监测作动器的阻抗曲线变化,控制伸缩装置20输出端对圆窗膜8的初始压力;然后使用固定装置100对该圆窗龛内固定式作动器进行植入,将拧紧轮140置于第一位置,并使其与位置固定螺母41啮合,然后旋转第一旋钮110,驱动夹持臂160夹紧夹持台31固定作动器,借助支脚170抵住圆窗龛6附近骨质将作动器固定在圆窗龛6内的适当位置;旋转第二旋钮120带动位置固定螺母41转动,位置固定螺母41挤压柔性铰链型膨胀套42使其往外侧变形张开,固定于圆窗龛6内部骨壁上,从而将整个作动器固定在圆窗龛6的内部骨壁上;然后旋松夹持臂160,取出固定装置100并将拧紧轮140换位至第二位置后,使其与位置调整螺栓21啮合,并旋转第一旋钮110,使夹持臂160夹紧夹持台31固定作动器;旋转第二旋钮120带动位置调整螺栓21转动,进而调整伸缩装置20输出端与圆窗膜8之间的距离及初始压力。

以上所述是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号