首页> 中国专利> 一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法

一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法

摘要

本发明公开了一种铋铁混合溶液中萃取‑氨水分解分离铋铁和生产纯氢氧化铋的方法,属于有色金属冶金领域,该方法首先用铁粉将铋铁混合溶液中高价铁离子还原成低价态的二价铁离子,过滤分离后得低价铋铁溶液,再用季铵盐萃取剂从中萃取分离铋,得富铋有机相和亚铁萃余液,后者可直接开路;而富铋有机相不进行反萃,直接氨水分解,生成氢氧化铋,同时再生季铵盐萃取剂。该方法通过价态调整和萃取工序实现了铋和铁的分离难题,铋铁分离彻底;再利用创新性的氨水分解步骤直接完成铋的解离,一步得到铋产品和再生萃取剂,简化了流程,降低试剂消耗,解决了湿法炼铋过程中铋铁溶液中分离和分别利用难题。

著录项

  • 公开/公告号CN108754142A

    专利类型发明专利

  • 公开/公告日2018-11-06

    原文格式PDF

  • 申请/专利权人 湖南工业大学;

    申请/专利号CN201810723236.6

  • 申请日2018-07-04

  • 分类号C22B3/44(20060101);C22B3/26(20060101);C22B30/06(20060101);C01G29/00(20060101);

  • 代理机构44202 广州三环专利商标代理有限公司;

  • 代理人肖宇扬

  • 地址 412007 湖南省株洲市天元区泰山西路88号

  • 入库时间 2023-06-19 07:00:22

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-12-31

    授权

    授权

  • 2018-11-30

    实质审查的生效 IPC(主分类):C22B3/44 申请日:20180704

    实质审查的生效

  • 2018-11-06

    公开

    公开

说明书

技术领域

本发明属于有色金属冶金领域,更具体的,涉及一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法。

背景技术

铋的冶炼有火法工艺和湿法工艺,火法工艺有熔析熔炼、沉淀熔炼、反应熔炼、混合熔炼等传统和侧吹熔炼等强化熔炼技术,存在试剂消耗大、直收率低、成本高等缺点;湿法炼铋以酸法为主,有三氯化铁浸出-铁粉置换法、三氯化铁浸出-隔膜电积法、三氯化铁浸出-水解沉铋法、氯气选择性浸出法等,其原理都是基于强氧化剂三价铁或氯气浸出硫化铋矿,再从浸出液中提取金属铋,主要问题是溶液循环利用难,因铋矿中的铁在酸浸时被一定程度的浸出,导致体积中的铁离子不断增生,目前一直没有很好的开路方法。

专利CN103849902A公开了一种铜电解液中铋和锑的回收工艺,对含有铋的铜电解液进行萃取,得到含铋的负载有机相,采用硫脲和硫酸作进行反萃,有效回收了铋和锑,对本专利相关的铋铁分离没有涉及。专利CN104060106A和文章“从氯化铋溶液中萃取铋并制备氧化铋”公开了一种从含铋溶液中用溶剂萃取法提取铋及制备氧化铋的方法,包括铋水解、重溶、萃取、反萃和热分解等过程,所用萃取剂为中性,萃取后再反萃得到铋前驱体。文章“氯离子作用下N235对铋的萃取性能”和文章“Cl-助萃作用下N235萃取脱除铜电解液的锑铋”中研究了N235对铋的萃取过程,主要针对铜电解液,其价态较为单一,同时也是使用萃取-反萃的工艺路线;总之,目前的铋萃取实践主要特点是:单一元素价态体系、中性或近中性萃取、萃取和反萃的工艺路线,对于处理酸性浸出或电积提铋过程中浸出液和电解液的开路除铁没有很好的效果。

由于萃取剂对金属离子价态有一定的选择性,因此可以把同类元素价态统一后再进行萃取分离,而季铵盐萃取剂对三价铋离子有较强的选择性;同时因为金属铋的氯化物有极强的水解特性,申请者采用直接从萃取物中水分富铋有机物,得到氯氧铋和季铵盐萃取剂。因此,本专利提出了一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法,通过价态调整、萃取分离、氨水分解而分离铋铁,直接产出纯氢氧化铋产品和再生萃取剂,缩短流程和降低试剂消耗,目的在于形成共性的铋铁深度分离新方法,达到三废减排、试剂减耗、清洁绿色的生产过程。

发明内容

本发明要解决的技术问题是,克服现有技术的不足,提出一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法,过程闭路循环、绿色减排。

本发明的目的通过以下技术方案予以实现:

一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法,包括以下步骤:

S1.价态调整:用铁粉将铋铁混合溶液中三价铁离子还原成低价态的二价铁离子,过滤分离后得低价铋铁溶液和过剩铁粉,后者返回该过程;

步骤S1中所述铋铁混合溶液为铋矿或含铋原料酸性提取过程中所产生的浸出液、电积后液等溶液,酸度为0.3~2g/L。

S2.萃取:将S1步产出的低价铋铁溶液用季铵盐萃取剂进行萃取铋,铋选择性地与有机相结合在一起,亚铁离子留在原溶液中,得富铋有机相和亚铁萃余液,从而实现两者的分离;

S3.水分解:将S2步产出的富铋有机相进行氨水分解,向有机相中加入氨水,铵铋有机相会发生水解和脱氯反应,通过控制终点pH使富铋有机物直接转化为氯氧铋、进一步脱氯成氢氧化铋,同时再生季铵盐萃取剂,氯氧化铋可为中间或终产品,再生的季铵盐萃取剂可返回萃取工序。

本发明科学设计了生产步骤,充分利用了萃取剂和铋的物化特性,各工序衔接流畅,分离效果彻底。首先加入铁粉将溶液中的Fe价态归整,全部呈低价态Fe2+存在,降低对铋萃取的影响,以实现季铵萃取剂按价态的选择性萃取分离。过程中主要发生以下反应:

2Fe3++Fe=3Fe2+>

之后向溶液中加入萃取剂,而季铵盐的选择性萃取可实现对三价铋的选择性分离,而对二价铁则基本不萃取。过程中主要发生以下反应:

R4NCl+BiCl3=R4NBiCl4>

生成的铵铋有机物加入氨水时,因溶液酸度降低而发生水解和脱氯反应,键型重组,生成氢氧化铋和季铵萃取剂,该反应在终点酸度为0.1g/L HCl以下即可完成,因为R4NBiCl4有很强的水解特性,进一步到碱性环境则发生脱氯反应:

R4NBiCl4+H2O=R4NCl+BiOCl+2HCl>

R4NBiCl4+3NH3·H2O=R4NCl+Bi(OH)3+3NH4Cl>

BiOCl+2NH3·H2O=Bi(OH)3+NH4Cl+NH3>

其中氢氧化铋为沉淀,过滤可分离;R4NCl为有机物浮于溶液上层,返回萃取利用,从而实现了铋的分离和萃取剂不反萃而直接再生。

优选地,在步骤S1价态调整过程中,铁粉加入量为理论量1.0~1.5倍,即按式(1)和(2)进行完全置换铋的化学计量系数计算。

优选地,在步骤S1价态调整过程中,反应温度为30~80℃,时间为1~3h;进一步优选反应温度为30~50℃,时间为1~2h。

优选地,步骤S2的萃取为多级逆流萃取过程,所述多级逆流萃取过程添加协萃剂、分散剂和稀释剂。

进一步优选地,在步骤S2萃取过程中,萃取过程相比O/A=1:2~4、萃取级数为2~5级、有机相萃取剂浓度为20~40%、协萃剂浓度为10~30%、分散剂浓度为2~10%。

再进一步优选地,相比O/A=1:2~1:3、萃取级数3级、萃取剂浓度为25~35%、协萃剂浓度为20~30%、分散剂浓度为2~5%。

在步骤S2萃取过程中,优选所述季铵盐萃取剂为N235和N263。优选所述协萃剂为TBP;分散剂为异辛醇或仲辛醇;稀释剂为磺化煤油。

优选地,步骤S3所述氨水分解的条件为:温度为20~60℃,时间为0.5~2h,水相终点pH>8。进一步优选地时间为0.5~1h,水相终点pH>10。

优选地,本发明步骤S3水分解后得到的季铵盐萃取剂100%返回步骤S2萃取进行循环,氨水分解后液送往浸出工艺。

相对现有技术,本发明突出特点及反应机理在于:

(1)本发明创造性的对萃取后有机相直接进行氨水分解,而没有遵循萃取-反萃的传统工艺流程,充分利用了季铵盐萃取剂、铋氯化物、氢氧化物的结构和物化特性,一步实现铋以氢氧化铋产品形式分离铋和萃取剂的直接再生,缩短流程、减少试剂消耗、高效解离。

(2)通过选择性萃取和选择性氨水分解实现了氢氧化铋产品的高纯化,为后续加工提供了优质原料。

(3)本发明提供了一种从铋铁溶液中分离铋和铁的共性方法,在实现各类铋矿和含铋物料的清洁提取的同时,对萃取过程进行了流程创新,亦可为其他金属萃取分离提供思路。

本发明方法工艺流程短、操作简单、铋铁分离彻底,萃取剂可循环使用,适用于多种铋铁酸性混合溶液的处理,尤其适用于铋矿或含铋原料酸性浸出过程中所产生的浸出液、电积后液等溶液。

附图说明

附图1为本发明方法工艺流程图。

具体实施方式

下面结合具体实施例进一步说明本发明。下述实施例仅用于示例性说明,不能理解为对本发明的限制。除非特别说明,下述实施例中使用的原材料和设备为本领域常规使用的原材料和设备。

实施例1

本实施例涉及一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法。

作为试验原料的铋铁混合溶液的成分(g/L)为:BiT>T>3+1.12、酸度1.4g/L;作为价态调整的铁粉为还原铁粉纯度Fe>98%。

具体步骤如下:

S1.价态调整:称取上述成分的铋铁混合溶液500mL,加入1.68g还原铁粉(理论量1.5倍),在40℃下反应3h;分离上清液后分析溶液中Fe3+的浓度为0.10g/L,计算得铁的还原率为91.10%;

S2.萃取:取步骤S1得到的全部调整液,加入200mL有机相萃取剂,其组成为:N235浓度为30.00%、TBP浓度为20.00%、仲辛醇浓度为4.00%。进行三逆流萃取,之后分离有机相和萃余液,分析萃余液中铋和铁的浓度分别为Bi 1.21、FeT>

S3.水分解:向步骤S2得到的有机液中缓慢加入15mL氨水,在50℃条件下搅拌反应2h后分离沉淀物、有机液和水液。经分析水液pH为12.3,有机相中BiT为0.26g/L,与水分离后可以返回步骤S2作为萃取剂再利用,计算铋分解率为95.76%。本实施例实现了铋的分离和萃取剂不反萃而直接再生。

实施例2

本实施例涉及一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法。

作为试验原料的铋铁溶液和还原铁粉同实施例1。

具体步骤如下:

S1.价态调整:称取上述成分的铋铁混合溶液500mL,加入1.46g还原铁粉(理论量1.3倍),在60℃下反应2h;分离上清液后分析溶液中Fe3+的浓度为0.07g/L,计算得铁的还原率为93.80%;

S2.萃取:取步骤S1得到的全部调整液,加入200mL有机相萃取剂,其组成为:N235浓度为38.0%、TBP浓度为15.0%、仲辛醇浓度为4.0%。进行三逆流萃取,之后分离有机相和萃余液,分析萃余液中铋和铁的浓度分别为Bi 1.07、FeT>

S3.水分解:向步骤S2得到的有机液中缓慢加入13mL氨水,在50℃条件下搅拌反应1h后分离沉淀物、有机液和水液。经分析水液pH为12.1,有机相中BiT为0.33g/L,与水分离后可以返回步骤S2作为萃取剂再利用,计算铋分解率为92.90%。本实施例实现了铋的分离和萃取剂不反萃而直接再生。

实施例3

本实施例涉及一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法。

作为试验原料的铋铁溶液和还原铁粉同实施例1。

具体步骤如下:

S1.价态调整:称取上述成分的铋铁混合溶液500mL,加入1.23g还原铁粉(理论量1.1倍),在70℃下反应1h;分离上清液后分析溶液中Fe3+的浓度为0.04g/L,计算得铁的还原率为96.43%;

S2.萃取:取步骤S1得到的全部调整液,加入250mL有机相萃取剂,其组成为:N235浓度为28.0%、TBP浓度为25.0%、异辛醇浓度为7.0%。进行五逆流萃取,之后分离有机相和萃余液,分析萃余液中铋和铁的浓度分别为Bi 0.87、FeT>

S3.水分解:向步骤S2得到的有机液中缓慢加入12mL氨水,在60℃条件下搅拌反应0.5h后分离沉淀物、有机液和水液。经分析水液pH为11.7,有机相中BiT为0.38g/L,与水分离后可以返回步骤S2作为萃取剂再利用,计算铋分解率为93.76%。本实施例实现了铋的分离和萃取剂不反萃而直接再生。

实施例4

本实施例涉及一种铋铁混合溶液中萃取-氨水分解分离铋铁和生产纯氢氧化铋的方法。

作为试验原料的铋铁溶液的成分(g/L)为:BiT>T>3+1.89、酸度0.45g/L;作为价态调整的铁粉为还原铁粉纯度Fe>98%。

具体步骤如下:

S1.价态调整:称取上述成分的铋铁混合溶液500mL,加入2.65g还原铁粉(理论量1.4倍),在60℃下反应1h;分离上清液后分析溶液中Fe3+的浓度为0.08g/L,计算得铁的还原率为95.76%;

S2.萃取:取步骤S1得到的全部调整液,加入150mL有机相萃取剂,其组成为:N235浓度为40.0%、TBP浓度为25.0%、异辛醇浓度为2.0%。进行四逆流萃取,之后分离有机相和萃余液,分析萃余液中铋和铁的浓度分别为Bi 1.02、FeT>

S3.水分解:向步骤S2得到的有机液中缓慢加入17mL氨水,在40℃条件下搅拌反应2h后分离沉淀物、有机液和水液。经分析水液pH为13.0,有机相中BiT为0.12g/L,与水分离后可以返回步骤S2作为萃取剂再利用,计算铋分解率为98.19%。本实施例实现了铋的分离和萃取剂不反萃而直接再生。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号