首页> 中国专利> 用于使用神经元网络模型构造神经刺激模式的系统

用于使用神经元网络模型构造神经刺激模式的系统

摘要

用于对神经刺激器进行编程的系统的示例可以包括存储设备和模式发生器。存储设备可以存储模式库和一个或多个神经元网络模型。模式库可以包括神经调制的场和波形。一个或多个神经元网络模型可以各自被配置为允许评估一个或多个场以及一个或多个波形在治疗神经调制的一个或多个适应症上的效果。模式发生器可以被配置为使用至少一个神经元网络模型来构造并且近似地优化神经刺激和/或其构建块的时空模式。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-22

    授权

    授权

  • 2018-11-20

    实质审查的生效 IPC(主分类):A61N1/372 申请日:20161229

    实质审查的生效

  • 2018-10-26

    公开

    公开

说明书

优先权要求

本申请在35 U.S.C.§119(e)下要求于2016年7月13日提交的美国临时专利申请序列号62/361,847以及于2015年12月30日提交的美国临时专利申请序列号62/273,062的优先权权益,其通过引用以其整体并入。

相关申请的交叉引用

本申请涉及于2016年7月13日提交的标题为“Method and Apparatus forComposing Spatio-Temporal Patterns of Neurostimulation for CumulativeEffects”的共同受让的美国临时专利申请序列号62/361,862;于2016年7月13日提交的标题为“Method and Apparatus for Optimizing Spatio-Temporal Patterns ofNeurostimulation for Varying Conditions”的美国临时专利申请序列号62/361,872;于2016年7月13日提交的标题为“Method and Apparatus for Guided Optimization ofSpatio-Temporal Patterns of Neurostimulation”的美国临时专利申请序列号62/361,880;以及于2016年7月13日提交的标题为“Method and Apparatus for Reducing SpatialSensitivity in Neurostimulation Using Spatio-Temporal Filtering”的美国临时专利申请序列号62/361,886,其通过引用以其整体并入。

技术领域

本文档一般地涉及医疗设备,并且更具体地涉及用于包括刺激模式的构造(composition)的神经刺激编程的系统。

背景技术

神经刺激(也称作神经调制)已经被建议作为针对许多病征的治疗。神经刺激的示例包括脊髓刺激(SCS)、深部脑刺激(DBS)、外周神经刺激(PNS)、和功能性电刺激(FES)。可植入神经刺激系统已经被应用于递送这种治疗。可植入神经刺激系统可以包括还被称作可植入脉冲发生器(IPG)的可植入神经刺激器,以及每个包括一个或多个电极的一个或多个可植入引线。可植入神经刺激器通过被放置在神经系统中的目标部位上或其附近的一个或多个电极来递送神经刺激能量。外部编程设备被用于利用控制了对神经刺激能量的递送的刺激参数来对可植入神经刺激器进行编程。

在一个示例中,神经刺激能量以电神经刺激脉冲的形式被递送。使用指定神经刺激脉冲的模式的空间(哪里要刺激)、时间(何时要刺激)和信息(指引神经系统如期望那样响应的脉冲模式)方面的刺激参数来控制递送。许多当前神经刺激系统被编程为利用一个或几个均匀波形持续地或猝发地递送周期脉冲。然而,人类神经系统使用具有更复杂的模式的神经信号来传送各种类型的信息,包括对疼痛、压力、温度等的感觉。神经系统可以将具有简单刺激模式的人工刺激解释为非自然现象,并且用意外的和非期望的感觉和/或移动来响应。例如,引起非目标组织或器官的感觉异常和/或振动的一些神经刺激治疗是已知的。

最近研究已经表明了可以改进某些神经刺激治疗的有效性和效力,并且通过使用对人体中观察到的自然模式的神经信号进行仿真的神经刺激脉冲模式来降低它们的副作用。虽然,现代电子学可以满足生成这种复杂的脉冲模式的需要,但是神经刺激系统的能力在很大程度上取决于其后制造的可编程性。例如,复杂的脉冲模式在当其为患者定制时或许仅获益该患者,并且在制造时预定的刺激模式可能实质上限制了定制的潜力。这种定制可以在患者处于临床环境的情况下,至少部分地由诸如医师或者其他护理人员来执行。

发明内容

用于对神经刺激器进行编程以通过多个电极递送神经刺激能量的系统的示例(例如,“示例1”)可以包括存储设备和模式发生器。存储设备可以被配置为存储模式库和一个或多个神经元网络模型。模式库可以包括多个场(field)和多个波形。场可以各自指定跨多个电极的神经刺激能量的空间分布。波形可以各自指定神经调制能量的时间模式。一个或多个神经元网络模型可以各自为被配置为允许评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在治疗神经调制的一个或多个适应症上的效果的计算模型。模式发生器可以被配置为生成指定一个或多个时空单元的序列的神经刺激的时空模式,所述一个或多个时空单元各自包括选自多个场的一个或多个场结合选自多个波形的一个或多个波形。模式发生器可以包括模式编辑器和模式优化器。模式编辑器可以被配置为构造多个场、多个波形、一个或多个时空单元或神经刺激的时空模式中的一个或多个。模式优化器可以被配置为使用一个或多个神经元网络模型中的至少一个神经元网络模型来近似地优化多个场、多个波形、一个或多个时空单元或神经刺激的时空模式中的一个或多个。

在示例2中,示例1的主题可以可选地被配置为包括第一编程器,其被配置为经由通信链路对神经刺激器进行编程。第一编程器可以包括编程控制电路、遥测电路和用户界面。编程控制电路可以被配置为根据神经刺激的时空模式而生成多个刺激参数,所述多个刺激参数控制对来自神经刺激器的神经刺激能量的递送。遥测电路可以被配置为将多个刺激参数发送至神经刺激器。用户界面可以包括显示器、用户输入设备以及被耦合至显示器和用户输入设备的界面控制电路。

在示例3中,示例2的主题可以可选地被配置为使得第一编程器还包括存储设备,并且界面控制电路包括模式发生器。

在示例4中,示例2的主题可以可选地被配置为还包括第二编程器,其被配置为被通信地耦合至第一编程器。第二个编程器可以包括存储设备和模式发生器。第一编程器的用户界面可以被配置为:允许对由模式发生器生成的神经刺激的时空模式的用户修改。

在示例5中,示例1至4中的任何一个或示例1至4的任何组合的主题可以可选地被配置为使得模式发生器被配置为生成测试模式,其为包括神经刺激的时空模式的所有一个或多个时空单元的神经刺激的时空模式的缩短版本。

在示例6中,示例1至5中的任何一个或示例1至5的任何组合的主题可以可选地被配置为使得模式发生器被配置为在指定一个或多个时空单元之后自动产生用于生成神经刺激的时空模式的参数。

在示例7中,示例6的主题可以可选地被配置为使得模式发生器被配置为自动产生包括控制每个时空单元的持续时间的参数以及控制神经刺激的时空模式中的时空单元的顺序的参数(当一个或多个时空单元包括多个时空单元时)这二者中的一个或多个的参数。

在示例8中,示例1至7中的任何一个或示例1至7的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型各自针对神经调制的一个或多个适应症中的一个适应症而被构造。

在示例9中,示例1至8中的任何一个或示例1至8的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括至少一个多节点模型,所述多节点模型包括各自表示神经系统的功能性子单元的多个节点。

在示例10中,示例9的主题可以可选地被配置为使得多节点模型包括复制节点,其被互连以形成针对该复制节点中的每个节点的感受场(receptive field)和周围场(surround field)的重叠重复模式。

在示例11中,示例10的主题可以可选地被配置为使得复制节点之间的互连具有可调节的强度或可调节的时间延迟中的一个或多个。

在示例12中,示例9至11中的任何一个或示例9至11的任何组合的主题可以可选地被配置为使得多节点模型还包括加权映射,所述加权映射向多个节点中的每个节点分配加权因子以用于评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在治疗神经调制的一个或多个适应症上的治疗效果。

在示例13中,示例9至12中的任何一个或示例9至12的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括多个多节点模型,其各自表示神经系统的不同的功能性子单元组。

在示例14中,示例9至12中的任何一个或示例9至12的任何组合的主题可以可选地被配置为使得多节点模型包括以下节点,其各自表示一个或多个神经元并且具有针对递送神经刺激能量的脉冲处的频率范围为最低的触发率。

在示例15中,示例1至14中的任何一个或示例1至14的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型各自包括:每个都与选自多个电极的一个或多个电极相关联的输入,以及表示神经调制的一个或多个适应症中的适应症的输出。

还提供了用于对神经刺激器进行编程的方法的示例(例如,“示例16”)。该方法可以包括提供模式库、提供一个或多个神经元网络模型、以及生成神经刺激的时空模式。模式库可以包括多个场和多个波形。场可以各自指定跨多个电极的神经刺激能量的空间分布。波形可以各自指定神经调制能量的时间模式。一个或多个神经元网络模型可以各自为被配置为允许评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在治疗神经调制的一个或多个适应症上的效果的计算模型。神经刺激的时空模式可以指定一个或多个时空单元的序列,所述一个或多个时空单元各自包括选自多个场的一个或多个场结合选自多个波形的一个或多个波形。神经刺激的时空模式的生成可以包括使用一个或多个神经元网络模型中的至少一个神经元网络模型来近似地优化多个场、多个波形、一个或多个时空单元或神经刺激的时空模式中的一个或多个。

在示例17中,示例16的主题可以可选地包括根据神经刺激的时空模式生成多个刺激参数(其控制对来自神经刺激器的神经刺激能量的递送),并且将多个刺激参数发送至神经刺激器。

在示例18中,示例16和17中的任何一个或示例16和17的任何组合的主题可以可选地包括生成测试模式,其为包括神经刺激的时空模式的所有一个或多个时空单元的神经刺激的时空模式的缩短版本。

在示例19中,提供如示例16至18中的任何一个或示例16至18的任何组合中找到的一个或多个神经元网络模型的主题可以可选地包括:提供各自针对神经调制的一个或多个适应症中的一个而构造的一个或多个神经元网络模型。

在示例20中,提供在示例16至19中的任何一个或示例16至19的任何组合中找到的一个或多个神经元网络模型的主题可以可选地包括:提供至少一个包括多个节点的多节点模型,所述节点各自表示神经系统的功能性子单元。

本发明内容是本申请的一些教导的概述,而不是旨在成为本主题的排他或穷举处理。关于本主题的进一步细节在详细描述和所附权利要求中找到。本领域技术人员在阅读和理解下面的详细描述并查看形成其一部分的附图时,本公开的其他方面将是显而易见的,其中的每个不被视为具有限制意义。本公开的范围由所附权利要求及其法定等同物限定。

附图说明

附图通过示例一般地示出了本发明文档中讨论的各个实施例。附图仅是出于示例性的目的并且可能不按比例。

图1示出了神经刺激系统的实施例。

图2示出了诸如可以在图1的神经刺激系统中实施的刺激设备和引线系统的实施例。

图3示出了诸如可以在图1的神经刺激系统中实施的编程设备的实施例。

图4示出了可植入神经刺激系统和在其中可以使用该系统的环境的部分。

图5示出了可植入神经刺激系统(诸如图4的可植入系统)的可植入刺激器和一个或多个引线的实施例。

图6示出了可植入神经刺激系统的外部编程设备(诸如图4的外部系统)的实施例。

图7示出了图6的外部编程设备的另一实施例。

图8示出了多节点神经元网络模型的实施例。

图9示出了神经元网络模型的一个实施例。

图10示出了示例性简化的神经元网络模型的特性。

图11示出了针对累积效果的神经刺激的实施例。

图12示出了多步优化的实施例。

图13示出了识别在身体的一部分中生成感觉异常的刺激位点(loci)的实施例。

图14示出了经由基于感觉异常的方法识别的根(root)上的刺激位点的实施例。

图15示出了经由基于感觉异常的方法识别的根上的刺激位点的另一实施例。

图16示出了用于使用时空滤波(spatio-temporal filtering)来减小空间灵敏度(sensitivity)的感兴趣区域(ROI)的实施例。

图17示出了被划分为多个子区域的ROI(诸如图16的ROI)的实施例。

图18示出了使用时空滤波来减小空间灵敏度的过程的实施例。

具体实施方式

在下面详细描述中,对形成其一部分的附图进行参考,并且通过图示来示出可以实践本发明的特定实施例。这些实施例被足够详细地描述以使本领域的技术人员能够实践本发明,并且应当理解的是,实施例可以被组合,或者其他实施例可以被使用以及可以进行结构、逻辑和电子变化,而不脱离本发明的精神和范围。对于本公开中的“一”、“一个”、或“各个”实施例的引用对于相同的实施例不是必要的,并且这种引用预示多于一个实施例。下面的详细描述提供了示例,并且本发明的范围通过随附权利要求和其合法的等价物来定义。

本文档讨论了一种用于对神经刺激模式进行编程的方法和系统。神经科学和神经刺激研究的进展已经导致了针对各种类型治疗来使用复杂和/或单独优化的神经刺激能量模式的需求。治疗各种类型失调的神经刺激系统的能力会由这种神经刺激能量模式的编程能力来限制。在各个实施例中,本系统允许神经刺激能量的模式的定制定义,其包括作为模式的构建块的波形的定制定义。在各个实施例中,本系统可以包括用户界面,该用户界面使用户通过针对每个模式创建和编辑相对简单单独构建块的图形表示来执行神经刺激脉冲的潜在非常复杂模式的定制定义变得可能。在各个实施例中,可单独定义的波形可以包括例如脉冲、脉冲猝发(burst)、猝发串、以及脉冲、猝发和串的序列。在各个实施例中,本系统可以为神经刺激能量模式提供不限于在制造时预定的波形,从而适应神经刺激能量模式的定制的需要和针对可以例如起因于神经刺激的未来研究的新类型的神经刺激能量模式的需要。这还可以促进可以被用户配置用于通过使用用户界面对设备进行编程来递送特定类型神经刺激治疗的通用神经刺激设备的设计。

在各个实施例中,本系统(称为“时空系统”)包括具有用户界面的神经刺激器编程设备,该用户界面使用户能够理解、管理和编程刺激并创建由空间和时间参数的复杂组合所指定的刺激模式。编程设备的用户可以关于对神经刺激器进行编程的不同方面以及不同的需求和限制而具有不同水平的知识和专业技术。示例包括:手术室内的医师对手术患者的神经刺激器进行编程的时间可能非常有限;学术研究人员可能对刺激的电气工程方面的理解有限;一些用户想要知道刺激的样子;以及一些用户可能对解剖、神经调制以及电刺激如何实际工作的理解有限。因此,用户界面提供对神经刺激编程的各个方面的不同访问水平的访问,以减少分心,确保准确性和患者安全,并且在神经刺激器的编程期间提高效率。在一个实施例中,针对神经刺激编程的不同阶段配置多个用户界面或多个版本的用户界面。例如,如本文档中所讨论的,用户界面可以被配置为用于构造诸如神经刺激的时空模式及其构建块的波形。另一用户界面可以被配置为用于与其他用户共享所构造出的波形。又一用户界面可以被配置为用于针对每个个体患者(individual patient)对刺激器进行编程。还一用户界面可以被配置为,当一个或多个神经刺激治疗被递送至患者时,供用户和/或患者使用以根据需要调节编程。一个或多个用户界面可以被配置为提供这些功能中的两个或更多个的任何组合。

在各个实施例中,用户界面允许以模板/预设开始的神经刺激编程,以使得能够在定义刺激波形时节约宝贵的时间。在各个实施例中,用户界面提供了完整的编辑控制以及简化的、引导的并且基于模板的编辑选项。在各个实施例中,用户界面向用户提供编辑特征和导轨(guide rail)的解释。

在各个实施例中,本系统可以使用硬件和软件的组合来实施,所述硬件和软件被设计为向诸如研究人员、医师或其他护理人员或神经刺激设备制造者的用户提供创建定制波形和模式的能力,试图提高治疗效果、增加患者对神经刺激治疗的满意度、减少副作用和/或增加设备寿命。本系统可以被应用于任何神经刺激(神经调制)治疗,包括但不限于SCS、DBS、PNS、FES和迷走神经刺激(VNS)治疗。

本系统在其生成不均匀模式的神经刺激能量以及除了“标准”形状(例如,正方形和指数脉冲)以外形状的波形构建块的能力上高度灵活。其扩展了已知神经刺激编程系统的时间编程能力(temporal programming capability)。本系统在空间(调制哪个神经元素(neural element))和时间(给这些神经元素传递什么信息)两者上都具有强大的能力,当与复杂神经系统交互时,其是实现神经刺激目标的潜在有力组合。本系统可以与不同的神经元素组和/或其支持元素“交谈”,并“告诉”它们“正确的”信息以获得期望的临床效果。

神经元模型已经(例如由各种学术团体)进行了构建以表明接合作为感兴趣网络的一部分的多个神经元组可以被利用来实现期望的输出。通常可以通过诸如纤维直径、主要输出神经递质和空间/解剖位置之类的某些特征来使这些神经元组分离。本主题在对神经刺激的编程(包括对神经刺激模式的构造)中使用这种神经元模型。例如,神经元模型的使用可以允许在患者不存在的情况下执行针对患者的神经刺激模式的很大一部分定制。例如,使用神经元模型还可以允许研究人员使用计算机模拟来评估各种新的神经刺激模式及其构建块。

本主题提供了用于选择对应于感兴趣的神经元素组的电场位点的方法。一个实施例使用基于感觉异常的方法来引导对场位点的选择(参见下面的“F.感觉异常引导的场选择”下的讨论)。一个实施例使用基于解剖的方法(参见下面的“G.解剖引导的场选择”下的讨论)。一个实施例使用具有较小空间灵敏度的滤波器(参见下面的“H.用于减少空间灵敏度的时空滤波”下的讨论)。

图1示出了神经刺激系统100的实施例。系统100包括电极106、刺激设备104和编程设备102。电极106被配置为被放置在患者中的一个或多个神经目标之上或在其附近。刺激设备104被配置为被电连接至电极106并且将神经刺激能量诸如以电脉冲的形式通过电极106递送至一个或多个神经目标。通过使用多个刺激参数(诸如指定了电脉冲的模式的刺激参数和指定了通过其递送每个电脉冲的电极的选择的刺激参数)来控制对神经刺激的递送,其包括通过不同的电极集合递送的脉冲之间的相对定时(timing)。在各个实施例中,多个刺激参数中的至少一些参数可由用户(诸如使用系统100来治疗患者的医师或其他护理人员)编程。编程设备102向用户提供对于用户可编程参数的可访问性。在各个实施例中,编程设备102被配置为经由有线或无线链路而通信地耦合至刺激设备。

在本文档中,“用户”包括使用系统100治疗患者的医师或其他临床医师或护理人员以及开发这种治疗的研究人员或其他专业人员;“患者”包括接收或打算接收使用系统100递送的神经刺激的人。在各个实施例中,患者可以被允许使用系统100诸如通过调节某些治疗参数并且输入反馈和临床效果信息而在一定程度上调节对他的或她的治疗。尽管以电脉冲形式递送的神经刺激能量在本文档的各个部分中被讨论为神经刺激的具体刺激示例,但是各个实施例可以使用以任何类型的刺激递送的任何类型的神经刺激能量,所述刺激能够调制在患者的神经或其他目标组织中的特性和/或活动。当电能被用于神经刺激时,刺激可以包括具有各种形状和相位的脉冲,以及诸如具有正弦波形的信号的连续信号。

在各个实施例中,编程设备102包括用户界面,其允许用户通过创建和/或编辑各个波形的图形表示来设置和/或调节用户可编程参数的值。这种波形可以包括例如要递送至患者的神经刺激脉冲的模式的波形以及可以被用在神经刺激脉冲的模式中的波形构建块。如下面进一步讨论的,这种波形构建块的示例包括脉冲、每个包括一组脉冲的猝发、每个包括一组猝发的串、以及每个包括一组脉冲、猝发和串的序列。在各个实施例中,编程设备102允许用户编辑现有的波形构建块、创建新的波形构建块、导入由其他用户创建的波形构建块和/或导出要被其他用户使用的波形构建块。用户也可以被允许定义特定于每个单独定义的波形的电极选择。在所示出的实施例中,用户界面包括用户界面110。在各个实施例中,用户界面110可以包括GUI或者容纳包括本文档中所讨论的波形构造的各种功能的任何其他类型的用户界面。

图2示出了诸如可以在神经刺激系统100中实施的刺激设备204和引线系统208的实施例。刺激设备204表示刺激设备104的实施例并且包括刺激输出电路212和刺激控制电路214。刺激输出电路212产生并且递送神经刺激脉冲。刺激控制电路214使用指定了神经刺激脉冲的模式的多个刺激参数来控制对神经刺激脉冲的递送。引线系统208包括一个或多个引线,其各自被配置为被电连接至刺激设备204和分布在一个或多个引线中的多个电极206。多个电极206包括电极206-1、电极206-2、…电极206-N,其各自单独导电触点以提供刺激输出电路212与患者的组织之间的电接口,其中N≥2。神经刺激脉冲各自通过选自电极206的电极集合从刺激输出电路212递送。在各个实施例中,神经刺激脉冲可以包括一个或多个单独定义的脉冲,并且电极集合可以由用户针对单独定义的脉冲中的每个而可单独定义。

在各个实施例中,引线的数量和在每个引线上的电极的数量取决于例如神经刺激的一个或多个目标的分布和用于控制每个目标处的电场的分布的需要。在一个实施例中,引线系统208包括2个引线,其中每个引线上合并有8个电极。在各个实施例中,刺激输出电路212可以支持诸如系统100的系统中的X个总电极(或触点,诸如选自电极206的电极),其中Y个电极可以被激活以用于治疗会话,其中Z个电极(Z<Y)可以在治疗会话期间被同时激活。该系统可以具有W个电源,以用于递送神经刺激脉冲,其中W大于Y但可以小于X。例如,刺激输出电路212可以具有W个定时通道,其中W大于Y但可以小于X。

图3示出了诸如可以在神经刺激系统100中实施的编程设备302的实施例。编程设备302表示编程设备102的实施例并且包括存储设备318、编程控制电路316和用户界面310。存储设备318存储了多个波形构建块。编程控制电路316根据神经刺激脉冲的模式来生成控制对神经刺激脉冲的递送的多个刺激参数。用户界面310表示GUI 110的实施例,并且允许用户使用选自多个波形构建块的一个或多个波形构建块来定义神经刺激脉冲的模式。

在各个实施例中,用户界面310包括神经刺激模式发生器320,其允许用户管理波形构建块,包括导入要添加至被存储在存储设备318中的波形构建块的波形构建块、导出选自被存储在存储设备318中的波形构建块的波形构建块、以及编辑波形构建块中的每个。在各个实施例中,用户界面310包括GUI,其允许对波形构建块中的每个进行图形编辑。在各个实施例中,神经刺激模式发生器320允许用户使用波形构建块(诸如脉冲、每个包括一组脉冲的猝发、每个包括一组猝发的串和/或每个包括一组脉冲、猝发和串的序列)来创建要递送至使用刺激设备104的患者的神经刺激脉冲的模式。在各个实施例中,神经刺激模式发生器320允许用户使用被存储在存储设备318中的一个或多个波形构建块作为模板来创建每个波形构建块。在各个实施例中,神经刺激模式发生器320允许每个新创建的波形构建块被保存为存储在存储设备318中的附加波形构建块。

在一个实施例中,用户界面310包括触摸屏。在各个实施例中,用户界面310包括任何类型的呈现设备,诸如交互式或非交互式屏幕和允许用户编辑波形或构建块并且调度程序的任何类型的用户输入设备,诸如触摸屏、键盘、小键盘、触摸板、位点球、控制杆、鼠标、虚拟现实(VR)控制、多点触控、语音控制、基于惯性/加速度计的控制以及基于视觉的控制。在各个实施例中,包括本文档中讨论的其各个实施例的神经刺激100的电路可以使用硬件和软件的组合来实施。例如,包括本文档中讨论的其各个实施例的用户界面100的电路、刺激控制电路214和编程控制电路316可以使用被构建为执行一个或多个特定功能的专用电路或者被编程以执行一个或多个这种功能的通用电路来实施。这种通用电路包括但不限于微处理器或其一部分、微控制器或其一部分和可编程逻辑电路或其一部分。

图4示出了可植入神经刺激系统400和在其中可以使用系统400的环境的部分。系统400包括可植入系统422、外部系统402以及在可植入系统422和外部系统402之间提供无线通信的遥测链路426。可植入系统422在图4中被示出为被植入在患者的身体499中。

可植入系统422包括可植入刺激器(也被称为可植入脉冲发生器或IPG)404、引线系统424和电极406,其分别表示刺激设备204、引线系统208和电极206的实施例。外部系统402表示编程设备302的实施例。在各个实施例中,外部系统402包括一个或多个外部(非可植入)设备,其各自允许用户和/或患者与可植入系统422通信。在一些实施例中,外部402包括意图使用户初始化和调节可植入刺激器404的设置的编程设备和意图供患者使用的远程控制设备。例如,远程控制设备可以允许患者打开和关闭可植入刺激器404和/或调节多个刺激参数中的某些患者可编程的参数。

通过示例而非通过限制示出了可植入系统422的元件的尺寸和形状以及其在身体499中的位置。将可植入系统作为根据本主题的各个实施例的编程的具体应用来讨论。在各个实施例中,可以将本主题应用于对使用电脉冲作为刺激的任何类型的刺激设备进行编程中,而不管患者体内的刺激目标以及刺激设备是否可植入。

图5示出了可植入神经刺激系统(诸如可植入系统422)的可植入刺激器404和一个或多个引线424的实施例。可植入刺激器404可以包括仅当刺激器具有感测能力时被需要的和可选的感测电路530、刺激输出电路212、刺激控制电路514、植入存储设备532、植入遥测电路534和电源536。为了患者监视和/或控制神经刺激的目的,感测电路530(当被包括和被需要时)感测一个或多个生理信号。一个或多个生理信号的示例包括神经和其他信号,其各自指示由神经刺激治疗的患者的情况和/或患者对神经刺激的递送的响应。在各个实施例中,为了患者监视和/或控制神经刺激的目的,可以通过处理感测到的一个或多个生理信号(诸如通过相关(correlation)、减法和/或被用作为对条件的、基于规则的状态机的输入)来生成附加信号。刺激输出电路212通过引线424而被电连接至电极406,并且通过选自电极406的电极集合来递送神经刺激脉冲中的每个。刺激控制电路514表示刺激控制电路214的实施例并且使用指定了神经刺激脉冲的模式的多个刺激参数来控制对神经刺激脉冲的递送。在一个实施例中,刺激控制电路514使用一个或多个感测到的生理信号来控制对神经刺激脉冲的递送。植入遥测电路534提供可植入刺激器404,其具有与诸如外部系统402的设备之类的另一设备进行无线通信(包括接收来自外部系统402的多个刺激参数的值)。植入存储设备532存储多个刺激参数的值。电源536为可植入刺激器404提供用于其操作的能量。在一个实施例中,电源536包括电池。在一个实施例中,电源536包括可再充电电池和用于对可再充电电池进行充电的电池充电电路。植入遥测电路534还可以用作功率接收器,其通过感应耦合或另一机制来接收从外部系统402发送的功率。

在各个实施例中,感测电路530(如果被包括的话)、刺激输出电路212、刺激控制电路514、植入遥测电路534、植入存储设备532和电源536被封装在气密密封的可植入壳体中。在各个实施例中,一个或多个引线424被植入,使得电极406被放置在神经刺激脉冲要被递送到的一个或多个目标上和/或在其周围,同时可植入刺激器404被皮下地植入并且在植入时被连接至引线424。

图6示出了可植入神经刺激系统的外部编程设备602(诸如外部系统402)的实施例。外部编程设备602表示编程设备302的实施例,并且包括外部遥测电路646、外部存储设备618、编程控制电路616和用户界面610。

外部遥测电路646提供外部编程设备602,其与另一设备(诸如可植入刺激器404)经由遥测链路426进行无线通信(包括向可植入刺激器404发送多个刺激参数)。在一个实施例中,外部遥测电路646还通过感应耦合将功率发送至可植入刺激器404。

外部存储设备618存储多个波形构建块,其各自可选择用作神经刺激脉冲的模式的一部分。在各个实施例中,多个波形构建块中的每个波形构建块包括神经刺激脉冲中的一个或多个脉冲,并且可以包括多个波形构建块中的一个或多个其他波形构建块。这种波形的示例包括脉冲、每个包括一组脉冲的猝发、每个包括一组猝发的串、以及每个包括一组脉冲、猝发和串的序列。外部存储设备618还存储多个刺激场。多个波形构建块中的每个波形构建块与多个刺激场中的一个或多个场相关联。多个刺激场中的每个场由通过其递送神经刺激脉冲中的脉冲的多个电极中的一个或多个电极和在该一个或多个电极上的脉冲的电流分布来定义。

编程控制电路616表示编程控制电路316的实施例,并且根据神经刺激脉冲的模式而生成多个刺激参数,其被发送至可植入刺激器404。使用选自被存储在外部存储设备618中的多个波形构建块中的一个或多个波形构建块来定义模式。在各个实施例中,编程控制电路616相对于安全规则检查多个刺激参数的值以将这些值限制在安全规则的约束内。在一个实施例中,安全规则是启发式规则。在各个实施例中,在完成编程之前,可能需要患者或受试者体验多个刺激参数(例如,以在治疗会话期间使用)。这可以包括例如患者或受试者体验整个参数集合、参数的代表性子集或经由处理定义的代表性参数集合,以确保治疗会话期间患者所体验的预期刺激的适合性和耐受性(tolerance)。

用户界面610表示用户界面310的实施例,并且允许用户定义神经刺激脉冲的模式并执行各种其他监视和编程任务。在一个实施例中,用户界面610包括GUI。用户界面610包括显示器642、用户输入设备644和界面控制电路640。显示器642可以包括任何类型的视觉显示器(诸如交互式或非交互式屏幕),并且用户输入设备644可以包括支持本文档中讨论的各种功能的任何类型的用户输入设备,诸如触摸屏、键盘、小键盘、触摸板、位点球、操纵杆和鼠标。在一个实施例中,用户界面610包括GUI,其具有用于显示波形构建块的图形表示的交互式屏幕,并且允许用户通过图形地编辑波形构建块来调节波形构建块。图形编辑的动作可以被脚本化,或以其他方式自动执行,或以编程方式执行。在一个实施例中,“图形编辑”可以包括键盘动作,诸如有时被称为“键盘快捷键”的动作。如本领域技术人员可以理解的,用户界面610还可以允许用户执行本文档中讨论的任何其他功能,其中图形编辑是适合的。

界面控制电路640控制用户界面610的操作,包括响应于由用户输入设备644接收到的各种输入并定义一个或多个刺激波形。界面控制电路640包括神经刺激模式发生器320。

在各个实施例中,外部编程设备602具有包括构造模式和实时编程模式的操作模式。在其他实施例中,这种操作模式可以作为单独的软件套件、用于远程应用(诸如“网络应用”)的界面而存在,或者位于除了外部编程设备602之外的一个或多个物理设备上。在构造模式(也称为脉冲模式构造模式)下,用户界面610被激活,而编程控制电路616被去激活(inactivate)。编程控制电路616不响应于一个或多个刺激波形中的任何变化而动态地更新多个刺激参数的值。在实时编程模式下,用户界面610和编程控制电路616两者都被激活。编程控制电路616响应于一个或多个刺激波形集合中的变化而动态地更新多个刺激参数的值,并且将具有更新值的多个刺激参数发送至可植入刺激器404。在各个实施例中,多个刺激参数向可植入刺激器404的发送可以由一组规则进行门控(gate)。可以指示可植入刺激器404以操作一个参数集合直到编程被关闭,所述参数集合为经处理版本的动态更新的参数集合。例如,猝发A可以被递送,接着是暂停B,并且然后接着是另一猝发C,其中暂停B很长。当编程器和/或系统识别出长暂停B不影响患者对猝发A或C的体验时,可植入刺激器404可以以短暂停顿D替换长暂停B。

A.使用神经元网络模型的神经刺激编程

图7示出了表示外部编程设备602的实施例的外部编程设备702的实施例。外部编程设备702包括外部遥测电路646、外部存储设备718、编程控制电路716和用户界面710。在各个实施例中,外部编程设备702可以被实施为单个设备或者彼此通信地耦合的多个设备。

外部存储设备718表示外部存储设备618的实施例,并且可以存储模式库(数据库)748和一个或多个神经元网络模型750。模式库748可以包括多个场(空间模式)和多个波形(时间模式)。多个场中的每个场指定跨诸如电极406的多个电极的神经刺激能量的空间分布。在各个实施例中,空间分布可以由针对每个电极的能量幅度或针对每个电极总能量的一部分来指定。当空间分布由针对每个电极的总能量的百分比指定时,例如,诸如在神经刺激的特定阶段期间,分配给电极0%意味着电极不被活跃使用,并且分配给电极100%意味着电极是唯一活跃使用的电极。多个波形中的每个波形指定神经调制脉冲的序列的波形。诸如神经刺激脉冲的幅度(例如以mA计)的某些参数可以在场或波形中定义。一个或多个神经元网络模型750各自为计算模型,其被配置为允许评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在治疗神经刺激的一个或多个适应症(indications)上的效果。在各个实施例中,该效果包括在治疗神经调制的一个或多个适应症上的一个或多个治疗效果。在各个实施例中,该效果包括在治疗神经调制的一个或多个适应症以及与神经调制相关联的一个或多个副作用上的一个或多个治疗效果。在各个实施例中,外部存储设备718可以包括一个或多个存储设备。编程控制电路716表示编程控制电路616的实施例,并且根据神经刺激的时空模式来生成多个刺激参数,所述多个刺激参数控制对来自神经刺激器(诸如可植入刺激器404)的神经刺激脉冲的递送。神经刺激的时空模式指定了被分组为一个或多个时空单元的神经刺激脉冲的序列。一个或多个时空单元各自包括选自多个场的一个或多个场结合选自多个波形的一个或多个波形。

用户界面710表示用户界面610的实施例并且包括显示器642、用户输入设备644和界面控制电路740。界面控制电路740表示界面控制电路640的一个实施例,并且包括生成神经刺激的时空模式的神经刺激模式发生器720。神经刺激模式发生器720表示神经刺激模式发生器320的实施例,并且包括模式编辑器752和模式优化器754。模式编辑器752允许用户创建和调节多个场、多个波形、一个或多个时空单元或神经刺激的时空模式中的一个或多个。模式编辑器752的示例在以下专利申请中进行了讨论:于2015年9月14日提交的标题为“GRAPHICAL USER INTERFACE FOR PROGRAMMING NEUROSTIMULATION PULSE PATTERNS”的美国专利申请序列号14/853,589;于2015年10月29日提交的标题为“METHOD ANDAPPARATUS FOR PROGRAMMING COMPLEX NEUROSTIMULATION PATTERNS”的美国专利申请序列号14/926,725;于2015年3月24日提交的标题为“METHOD AND APPARATUS FORCONTROLLING TEMPORAL PATTERNS OF NEUROSTIMULATION”的美国临时专利申请序列号62/137,567;于2015年2月4日提交的标题为“METHOD AND APPARATUS FOR PROGRAMMINGCHARGE RECOVERY IN NEUROSTIMULATION WAVEFORM”的美国临时专利申请序列号62/111,715;于2015年7月30日提交的标题为“USER INTERFACE FOR CUSTOM PATTERNEDELECTRICAL STIMULATION”的美国临时专利申请序列号62/198,957;以及于2015年10月15日提交的标题为“USER INTERFACE FOR NEUROSTIMULATION WAVEFORM COMPOSITION”的美国临时专利申请序列号62/241,965,所述申请全部转让给波士顿科学神经调制公司,通过引用以其整体并入本文。模式优化器754使用一个或多个神经元模型750中的至少一个神经元网络模型近似地优化多个场、多个波形、一个或多个时空单元或神经刺激的时空模式中的一个或多个。

在其中外部编程设备702被实施为彼此通信地耦合的多个设备的各个实施例中,多个设备中的一个或多个可以各自包括类似于用户界面710的用户界面。在各个实施例中,外部编程设备702包括可以被通信地耦合至模式优化器754的附加模式优化器。在一个实施例中,附加模式优化器接收多个场、多个波形、一个或多个时空单元或神经刺激的时空模式中的一个或多个,其由模式优化器近似地优化并且以离线方式操作以将其转换为刺激参数集合,所述刺激参数集合被编程在刺激设备(诸如可植入刺激器404)上,或者另外考虑附加约束(例如电池寿命)。在另一实施例中,附加模式优化器以在线方式操作以改变刺激参数以适应设备,或者适合给定的附加约束。

在各个实施例中,外部编程设备702被实施为构成前端和后端的多个设备。在一个实施例中,前端和后端是类似的,并且可选地首先涉及场和模式集合的创建和存储,并且其次涉及场和模式的组合,以用于对设备进行编程,或者以其他方式首先涉及直接将场和模式编程在设备上,其中在一些实施例中,滤波器(filer)/优化器在线操作以限制或调制编程,或建议可以由编程器可选地选择的编程中的改变。在一个实施例中,前端在一个设备(例如,临床医师的编程器(CP、被配置为由用户诸如照料其中放置有可植入系统422的患者的临床医师所使用的编程设备)、计算机或智能电话上的应用)上,并且后端在别处(例如,“云”、用户的计算机/服务器或制造商的计算机/服务器)。

在一个实施例中,创建场和模式的第一行为可以在没有患者存在的情况下完成,并且可选地在除了CP之外的设备上完成。例如,可以基于从患者群体和/或每个个体患者收集和/或导出的信息来创建场和模式。这种信息可以被用于开发和/或定制表示患者的神经系统的部分的计算模型(诸如一个或多个神经元网络模型750),以用于评估对神经刺激的响应。

表1示出了被存储在诸如模式库748的库中的场(空间模式)和波形(时间模式)的示例。表2示出了被用于生成神经刺激的时空模式的场和波形的示例。

波形F1P1F2P2FNPN

表1

波形F1P1+P2F2+F3P2+P3,P1FNPN

表2

在一个实施例中,在编程设备(也称为“播放器(player)”)诸如外部编程设备702中以其中患者必须在设置可被保存至刺激器之前体验一些完整刺激集合或代表性刺激集合的方式来组合场和模式。在一个实施例中,该代表性刺激集合可能不与完全编程的设置相同,但可以包括自动选择的高亮部分(highlight),可选地具有来自用户的输入。例如,在两个场(F)和模式(波形,P)被选择出(其中每个模式具有长运行时间并且其被连续运行)的情况下,经验程序可以是场1(F1)模式1(P1)的前N秒,接着是场2(F2)模式2(P2)的前N秒。在一个实施例中,系统可以自动生成场和模式集合,其与由用户创建的任何整个场和模式或者部分场和模式不相同,并且该试验设置或设置集合可以被用于确定出所提出的设置可以被编程。

在一个实施例中,场和模式被输入到播放器中,并且自动使用附加参数来调节刺激。例如,输入F1P1和F2P2,但是期望的结果涉及F1P1与F2P2之间的随机交替,使得播放器自动设置与例如F1P1相对于F2P2的相对持续时间有关的编程设置。

在一个实施例中,场和模式被输入到播放器中,并且用户输入附加参数以控制对构造的播放(play)(即,根据以场和模式构造的神经刺激的模式来控制对神经刺激的递送)。在各个实施例中,场和模式被输入到播放器中,并且播放器自动生成附加参数以控制对构造的播放。在各个实施例中,例如在第一次在患者中进行编程时(例如,10秒的初始刺激幅度斜坡),用户可以设置播放器中的一般设置,并且将这种一般设置应用于所有场和模式集合。

在一个实施例中,模式可以被编程为同时(组合地)或连续(一次一个)播放。例如,P1可以是20μs脉冲宽度的矩形脉冲形状的40Hz信号,并且P2可以是具有100μs脉冲宽度的三角形脉冲形状的80Hz信号。P1和P2的组合可以被写为P1+P2并且导致两种模式同时与一些场或场组合播放,其中P1和P2具有恒定的相位对齐。可替选地,P1和P2可以各自具有关联的持续时间,并且连续播放。

在一个实施例中,允许可以在不修改任何模式的情况下与所有模式同时播放的模式,并且不允许例如需要仲裁的模式。在一个实施例中,表2中的行被连续播放。在一个实施例中,场和模式可以被创建为单独的单元,并被组合用于“回放”。可以将“轨道(track)”(表2中的行)设置为重复(例如,连续地或指定的重复次数),并且轨道的子单元可以被分组以用于播放。

B.神经元网络模型

图8示出了多节点神经元网络模型850的实施例。存在针对各种神经调制适应症的计算网络模型。这些现存的模型或新模型通常表示功能整体的简化子单元。这些单元中的每个都可以被复制以形成多节点模型。该多节点模型然后可以被用于驱动假设生成(hypothesis generation),或者在具有对模型或其分量(component)的实时反馈和改变的一些实施例中以“在线”方式使用,以改进对神经刺激设备的编程。在各个实施例中,一个或多个神经元网络模型包括至少一个多节点模型,其包括各自表示神经系统的功能性子单元的多个节点。这些功能性子单元可以对应于神经系统的建模部分中的解剖子单元或解释神经系统的建模部分的功能的抽象(abstraction)。通过示例而非通过限制,如图8所示的神经元网络模型850包括中心节点和六个周围节点1-6。在各个实施例中,神经元网络模型850可以包括任何数量的互连节点。这些节点中的每个都可以表示完整的模型或模型子集的重复。在各个实施例中,神经元网络模型850或神经元网络模型850的任何部分可以基于现有模型或由针对特定应用的一个或多个新分量(例如,针对特定条件的神经刺激)增大(augment)的现有模型。这些节点之间的互连可以产生针对神经元网络模型850中的每个节点的“感受场”和“周围场”的重叠重复模式。模型的这种品质可以产生对特定场、模式或者任一者或两者的组合的灵敏度。这些节点之间的连接在图8中被表示为连接矩阵。可以类似地控制节点或节点元素之间的各种连接的强度,以及节点或节点元素之间的时间延迟。在一个实施例中,在一些评估期间给予神经元网络模型850的任何特定节点的重要性也可以通过加权映射(weighting map)来缩放(scale)。当计算一些输出度量时,可以对节点或节点元素进行不同的加权。

当评估一些输出度量时,可以采用诸如神经元网络模型850的多个多节点模型,诸如(通过示例而非通过限制)表示神经元素的第一多节点模型以及表示支持神经胶质结构的第二多节点模型。这些模型可以在功能上分离,可以计算出来自每个模型的输出度量,并且后处理可以在计算例如成功的测量时考虑来自每个模型的结果。或者,模型可以在功能上相关,使得一个模型中的变化传播在第二个模型中的变化。两个以上的模型可以被互连。

图9示出了神经元网络模型(以下称为“Zhang模型”)的实施例,其在以下文献中进行了讨论:T.C.Zhang,J.J.Janik,and W.M.Grill,“Modeling effects of spinal cordstimulation on wide-dynamic range dorsal horn neurons:influence ofstimulation frequency and GABAergic inhibition”,J Neurophysiol 112:552–567,2014。图10示出了作为背角电路的计算网络模型的Zhang模型的实施例。该模型具有基于背角伤害性处理方案的网络架构,其中基于生物物理学的背角神经元的房室模型经由兴奋性和抑制性突触的表示连接。如图9所示。该模型包括背角中的局部神经元素(Aβ、Aδ和C纤维)、周围神经元素(不同的Aβ纤维)、抑制性(IN)中间神经元、兴奋性(EX)中间神经元以及宽动态范围(WDR)投射神经元。可以使用实验数据来确定和调节模型的参数。SCS的表示可以被应用于背柱输入。在各个实施例中,神经元网络模型850可以包括诸如相互抑制性节点的多个互连的节点。每个节点可以包括Zhang模型(诸如图9所示的模型)。

可交替地,每个节点由一个模型组成,其中Zhang模型的神经元被更简单的神经元模型替换(例如,例如如在Peter Dayan and L.F.Abbott,Theoretical>,Chapter 7(麻省理工学院出版社,2001)中所讨论的,神经元被完美或广义整合和触发(fire)神经元替换,并且突触被简单的突触模型替换)。如图10所示,模型参数是适合的,使得WDR神经元呈现U形转弯曲线(turning curve):在一定范围的输入频率内触发率(firingrate)为最低。在各个实施例中,触发率可以表示单个神经元的触发率、多个神经元的平均触发率、多个神经元的累积触发率或者由数学或统计操作产生的计算出的触发率。这个可替选的模型是Zhang模型的大幅简化,但可以捕捉到Zhang模型的基本特征。如在WulframGerstner and Werner M.Kistler,Spiking>,Chapter 4(剑桥大学出版社,2002)中所讨论的,进一步的简化可以涉及将每个节点视为具有对相邻节点的相互抑制的广义整合和触发神经元,并且模型参数适合于来自WDR神经元的实验数据。

在其中使用多节点神经网络模型的各个实施例中,对神经刺激的递送可以被表示为以时空特定的方式递送至节点集合的输入。多节点神经网络模型的输出可以指示递送神经刺激的效果,包括治疗和/或一个或多个副作用。

通过测量由于一个节点的激活而造成的感知阈值以及由相邻节点的激活所引起的该阈值的百分比变化,可以调节对相邻节点的抑制。然而,还有可能的是,所发现的结果对于相互抑制的广泛选择是稳健的,并且调节相互抑制将是不必要的。

在各个实施例中,为了优化神经刺激的时空模式,神经元网络模型可以以宽范围的时空模式和脉冲形状来运行,其目的在于使宽动态范围上特定组的相邻节点的WDR输出最小化。提供近似最小WDR输出的神经刺激的时空模式可以被用于生成多个刺激参数的初始集,其控制对来自刺激设备(诸如可植入刺激器404)的神经刺激脉冲的递送。

在一个实施例中,多节点神经网络模型的每个节点表示感觉异常位点(或其他位点,如下面在“感觉异常引导的场选择”下讨论)。在这种情况下,该模型将包括与捕获感觉异常位点所需的节点一样多的节点以及用于捕获可能不直接与疼痛相关的区域的抑制性效果的一些附加节点。

C.用于累积效果的神经刺激

在各个实施例中,神经刺激可以被递送至不同的场、具有不同的波形和/或在不同的时间,以用于累积效果。例如,可能期望的是在每个刺激位置处保持特定刺激阈值(例如,亚感觉异常(sub-paresthesia)阈值)的同时强制执行一些刺激效果。

在一个实施例中,沿着所选择的神经元素(例如,一束轴突纤维)的神经刺激的许多重复递送可能意味着沿着引线的长轴的重复刺激,以具有许多机会而导致神经刺激的效果(例如,取决于对不能同步的信号的绝对定时的效果)。在一个实施例中,诸如神经元网络模型850的神经元网络模型被用于确定例如可以如何将神经刺激的重复配置在空间上(例如,在5mm内不重复或者所激活的组织的体积的宽度的1.5倍)或在时间上(例如,在12ms内不重复,或者在2个突触延迟内和4ms的传导延迟内不重复)。

在各个实施例中,使用诸如神经元网络模型850的神经元网络模型,可以设计第一编程参数集合和第二编程参数集合,其中单独应用任一集合不具有期望的效果,但是应用两个集合产生了期望的效果。这个概念可以被延伸到具有协同关系的多于两个编程参数集合。例如,一个集合的应用可能导致期望的效果但是具有不期望的副作用,并且另一集合的应用可以减轻副作用。这以可能比例如仅使用侧面阳极收缩一些阴极的激活场更复杂的方式发生。

图11示出了针对累积效果的神经刺激的实施例。在图11中,刺激时间tN表示相位对齐(相对时间而不是绝对时间)。累积刺激区域可能在空间上彼此接近或彼此远离。这些区域可以靶向多个位置处的相同或类似的神经元素,或者可以靶向其网络内不同位置处的相关神经元素。刺激区域可能在空间上紧密或更加分离。在图11中,tN(FN,PN)的位置示出了近似的场位置。在各个实施例中,诸如神经元网络模型850的神经元网络模型可以被用于分析根据tN(FN,PN)应用的神经刺激的累积效果。在各个实施例中,诸如神经元网络模型850的神经元网络模型可以被用于确定用于实现指定的期望累积效果的近似最优集合tN(FN,PN)。

D.神经刺激的稳健配置

在各个实施例中,刺激配置的优化可以包括在一系列变化的条件下搜索稳健的刺激配置(最大可能程度上满足目标)。刺激配置的价值和适用性对于增加数量的条件(其中其很好地表现)更大,即使在这些条件中的一些下不同的配置可能表现更好也是如此。这种对刺激配置的优化被称为神经刺激的稳健配置。在各个实施例中,可以使用诸如神经元网络模型850的神经元网络模型来执行神经刺激的这种稳健配置。

在各个实施例中,可以应用神经刺激的稳健配置来设计刺激场形状,所述刺激场形状对于绝对位置或者例如相对于患者体内的感兴趣的目标或参考结构(例如,中线、脊椎水平、大血管、被编号的或生理地鉴定的根)的相对位置上的小变化是稳健的。这种小变化的示例包括植入患者后的电极位移、患者随着时间的推移的生理或解剖变化以及患者之间的生理或解剖差异。在这种示例中,神经刺激的稳健配置可以减少随着时间的推移调节针对每个患者的设置的需要和/或减少针对每个患者的定制的程度。

在各个实施例中,可以应用神经刺激的稳健配置来设计刺激模式,所述刺激模式对于绝对时间对齐或者与诸如诱发复合动作电位(evoked compound action potential)(ECAP)、特定神经元的触发以及自然或病理信号峰值频率的一个或多个信号的相对时间对齐上的变化是稳健的。绝对或相对时间对齐指的是动作早于或晚于期望的时间一个固定量(例如,1分或1秒)。相对对齐指的是期望的定时的一些特征。

在各个实施例中,可以采用机器学习和决策制定的概念,例如,模糊优化、多目标优化或稳健优化可以被用于神经刺激的稳健配置。

在各个实施例中,可以将极限放置在所找到的最大效果与所寻求的稳健效果之间可允许的偏差上。例如,神经刺激的稳健配置导致具有分数‘X’的度量的模式或场,该方法将仅考虑具有分数X·α的模式或场,其中0<α<1。

E.多步骤优化

在各个实施例中,使用诸如神经元网络模型850的神经元网络模型的分析可能表明两个刺激场的特定组合是期望的,但是这两个场的相对位置可能取决于个体患者的解剖和生理。在这种情况下,第一场和波形组合可以被优化,并且然后当第一场和波形组合被应用于递送神经刺激时,其他场和波形组合可以相对于第一场和波形被优化。在各个实施例中,可以通过使用诸如神经元网络模型850的神经元网络模型来指定两个场以被组合应用以实现指定的效果。

图12示出了多步优化的实施例。如图12所示,示出了第一场(F1)以及通过第一场递送神经刺激的效果区域(效果1,效果2),并且第二场(F2)被示出为被移动。区域效果1和效果2各自示出了不管第二场的位置如何,在其内对通过第一场递送的神经刺激的响应处于一定范围内的区域。当这些区域各自以颜色编码时,这些区域可以被称为“伪颜色图(false color map)”。在各个实施例中,区域效果1和效果2可以各自在二维平面中描绘变量的强度。可以根据一个或多个标准放置第一场,并且然后根据一个或多个标准相对于第一场放置第二场。在各个实施例中,当第二场被优化时,第一场可以由于与第二场的交互而被进一步优化。这可以重复,直到结果令人满意。

F.感觉异常引导的场选择

在各个实施例中,可以使用刺激诱发的感觉(例如感觉异常)来引导用于时空方法的空间位点。例如,可以识别出感觉位点(诸如感觉异常位点)并将其用作用于识别疼痛控制刺激的最佳场的起始点。在一些情况下,由神经刺激创建的一个或多个感觉异常位置对应于应用疼痛控制刺激的感兴趣区域。具有针对双频神经刺激的Zhang模型(图9)的刺激显示出,以不同频率激励的多个神经元组可以减少平均WDR输出(疼痛替代(surrogate))。尽管感觉异常被作为刺激诱发的感觉的具体示例来讨论,但是如使用感觉异常位点应用的本主题也可以更一般地被应用于感觉位点。因此,在以下关于感觉异常引导的场选择的讨论中,“感觉异常”可以用刺激诱发的感觉或特定类型的刺激诱发的感觉替换,并且“感觉异常位点”还可以被“感觉位点”替换,其包括刺激诱发的感觉或特定类型的刺激诱发的感觉的空间位点。换言之,本文档中讨论的感觉异常引导的场选择可以用作感觉引导的场选择,其中感觉是任何刺激诱发的感觉或一种或多种特定类型的刺激诱发的感觉。

利用神经刺激模式的闭环优化,本系统可以帮助选择要使用的刺激场。由于协调复位(coordinated reset)使用多个场位置(但具有非常具体的时间方法),因此可以将本系统的许多方面用作对协调复位类型的刺激的改进。

图13示出了识别在身体的一部分中生成感觉异常的刺激位点的实施例。图13示出了与通过两条引线(引线1和引线2)上的所选电极递送的神经刺激相关联的刺激位点(1、2、3、X和Y)及其对应的感觉异常位点。电流导向和神经靶向程序(诸波士顿科学神经调制公司的Illumina3DTM)能够识别出在身体的一部分中生成感觉异常的多个位点。可能的是,这些刺激位点对应于不同的“局部”轴突组(尽管即使患者在类似位置感觉到感觉异常,但有可能存在周围抑制连接性)。因此,电流导向和神经靶向程序可以被用于找到“局部”神经元素组,针对其可以使用双刺激频率或多刺激频率采用时空方法。通常,可以找到多于2个的位点,并且有可能的是多于两个的组将能够在两个小组上改善。候选时间模式包括:(1)双频模式刺激(同时向不同纤维群体递送具有两个不同刺激频率的神经刺激,例如,T.C.Zhang,J.J.Janik,and>Progress of Theoretical Physics>,No.150,281-296(2003))。

可以识别没有或有一些(但不完全)重叠(例如,图13中的X和Y)的相邻的刺激区域。可以使用在时空方法中包括这些“周围”区域。这些区域可能不如疼痛区域那样敏感,但可以被刺激以参与周围抑制效果。

以紧密接触的间距使用电流导向和/或神经靶向程序可以是选择性刺激背根或背根的部分的特别好方法。也就是说,通过选择横向(在根附近彼此靠近)的刺激位点,人们可以能够选择刺激从属于身体的共同部分以及共同神经网络的多个神经元组(或许重叠)。

在一个实施例中,针对时空方法选择若干基于根的刺激位点。在一个实施例中,选择背柱和基于背根的位点。

在一个实施例中,除了多个位点之外,在时空方法中使用多个波形。这些波形被设计为在不同时间调制不同的神经元素组(可能重叠)(例如,预脉冲、长持续时间脉冲、有或没有阳极强化等)。

在一个实施例中,对周围区域的刺激是优选的,这是因为其不包括痛苦区域中的WDR激励,但确实包括抑制。例如,可以发起周围区域中的刺激,并且然后随着时间的推移,刺激到达疼痛区域(即疼痛区域随着时间的推移用刺激挤压)。

图14和15各自示出了经由基于感觉异常的方法识别的根上的刺激位点的实施例。在一个实施例中,感觉异常被用于识别对应于疼痛区域处或其周围的感觉异常的引线或解剖空间中的位点,并且基于该位点自动选择多个其他位点。如图14所示,例如,符号X表示经由基于感觉异常的方法识别出的根上的刺激位点。一旦选择X作为良好的“起始点”,系统就可以自动选择多个其他空间相关点(诸如X上方和下方的点指示的点)。输入可以被馈送至神经元网络模型,例如,感觉异常图或荧光透视图像或从预设集中作出的选择,然后系统可以运行该模型,或者使用信息或模拟。如图15所示,又如,符号X表示经由基于感觉异常的方法识别出的背柱上的刺激位点。一旦选择X作为良好的“起始点”,系统就可以自动选择多个其他空间相关点(诸如由符号X周围的点指示的点)。在一些实施例中,针对用户预选出附加点的空间布置。在另一实施例中,用户可以创建或修改附加点相对于一个或多个起始点的布置。在一个实施例中,用户可以访问或创建空间布置的库(例如,针对根的布置、针对柱的布置、紧密的布置(或许针对病灶性疼痛)、广泛的布置(或许针对复杂的弥漫性疼痛)等)。

G.解剖引导的场选择

在各个实施例中,解剖被用于引导用于时空方法的空间位点。参考图14和15,除了“开始点”基于患者解剖、疼痛区域和引线位置之外,解剖引导的场选择类似于如上所述的感觉异常引导的场选择。例如,对于左脚疼痛,可以选择特定的基于解剖的点或点集作为点集的起始点或中心。该方法使用疼痛位置与可能控制疼痛的刺激部位之间的解剖关系之间的现有知识。

在一个实施例中,基于要被调制的区域的“引线或电极覆盖率”进一步选择点集。在一个实施例中,用户识别或“涂画(paint)”“感觉异常人”上的疼痛位点,并且基于查询表自动选择用于时空方法的点组。在一个实施例中,疼痛诊断是被用于选择时空方法中的点和/或其他刺激参数的另一维度。在一个实施例中,疼痛区域和诊断可以在引线放置之前被输入到系统中,并且系统将向用户显示期望引线或电极覆盖在何处。

H.时空滤波以降低空间灵敏度

在各个实施例中,应用感兴趣区域(ROI)内的时空滤波以降低患者响应于神经刺激对的场的灵敏度。图16示出了用于使用时空滤波来降低空间灵敏度的ROI的实施例。神经刺激的成功可能取决于将刺激恰好递送至正确的地点以恰好接合正确的神经元素。当识别和/或维护这种“正确地点”的确切位置是困难的时,替代方案是使用滤波器来调制通过不如“正确地点”更空间特定的ROI生成或传递的信息。

图16示出了被选择用于滤波的示例ROI。如下面参照图18进一步讨论的,大量的神经信息在ROI中生成或通过ROI传播,并且使用时空方法的“滤波器”可以被用于预测通过ROI调制后到达神经或神经元目标的信息。传递或处理“信息”的ROI(图16中所示的神经目标)中的神经元素的示例包括背根、背柱、突触前和突触后背角以及背外侧索(finniculus)。

各种时空模式在各个实施例中可能是有用的。在一个实施例中,ROI被划分为多个子区域,并且在不同的时间点对子区域或子区域组中的每个进行电调制。图17示出了被划分为多个子区域的ROI(诸如图16的ROI)的实施例。在图17中,数字可以代表浆板引线上的电极,其转而应刺激不同但重叠的子区域。定时可以由伪随机发生器,噪声模拟过程,泊松过程,如随机确定或由启发式规则优化、引导的规则的模式等确定。优化以生成对子区域的调制顺序的一个示例可以被选择出以最大化时空距离测量(例如,对于n个点,其中rij是i与j之间的距离的测量值,并且delta-t是i与j之间的时间的测量值,并且测量值被适当地加权/归一化)。在一个实施例中,用户能够选择滤波器的特性。例如:循环通过滤波器中的每个点所需的平均时间,随机性(stochastic)过程、随机过程或噪声过程的统计特性。在一个实施例中,脉冲宽度和/或幅度和/或脉冲形状也是通过其存在脉冲间变异性的维度。在一个实施例中,典型的脉冲间持续时间对应于10Hz-100Hz范围内的频率(类似于双频刺激)。在另一实施例中,脉冲间持续时间对应于在100Hz至100kHz范围内的频率。在一个实施例中,使用大于1ms的特别长的脉冲,并且针对不同的神经元素的神经触发发生在脉冲期间的不同时间。在一个实施例中,脉冲持续时间至少为2ms或甚至5ms。在一个实施例中,脉冲的形状也脉冲间地改变,使得募集特性脉冲间地改变。

图18示出了使用时空滤波来减小空间灵敏度的过程的实施例。ROI滤波器的输入是被应用于ROI中的点的刺激,ROI滤波器的输出是将实际应用于神经目标中的目标点的刺激,并且神经元网络模型被用于给定输入而产生输出。该过程的结果提供了对可以递送神经刺激以产生一种或多种特定效果的区域的预测。

类似于解剖引导的场选择,在一个实施例中,例如基于疼痛位置、疼痛诊断和/或引线位置自动选择ROI。在一个实施例中,可以使用多个空间上不同的ROI。在一个实施例中,子区域的数量是诸如4的默认数量。在另一实施例中,子区域的数量可以由用户改变并且可以高达好几万。在一个实施例中,针对每个子区域的刺激或调制场由针对给定的引线集合的像神经靶向程序(例如,Illumina3DTM)的算法确定。在这种实施例中,用户可以使用像三极的目标场形状或者可以选择其他形状(例如,单极、横向场或其他用户定义的方法)。在一个实施例中,通过根据强度-持续时间特性(用于管理PW和幅度折衷(trade>

附加示例

除了上面发明内容部分中讨论的那些之外,将本系统的非限制性示例提供如下:

(A.使用神经元网络模型的神经刺激编程)

在示例1中,用于对神经刺激器进行编程以通过多个电极递送神经刺激脉冲的系统可以包括:存储设备、编程控制电路和模式发生器。存储设备可以被配置为存储模式库和一个或多个神经元网络模型。模式库包括:多个场,其各自指定选自多个电极的一个或多个电极以及所选择的一个或多个电极的空间分布;以及多个波形,其各自指定神经调制脉冲序列的时间模式。一个或多个神经元网络模型各自为计算模型,其被配置为允许评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在治疗神经调制的一个或多个适应症上的一个或多个治疗效果。编程控制电路可以被配置为根据神经刺激的时空模式生成多个刺激参数,所述多个刺激参数控制对来自神经刺激器的神经刺激脉冲的递送,所述神经刺激的时空模式指定了被分组为一个或多个时空单元的神经刺激脉冲的序列,所述一个或多个时空单元各自包括选自多个场的一个或多个场结合选自多个波形的一个或多个波形。模式发生器可以被配置为生成神经刺激的时空模式,并且包括:模式编辑器,其被配置为构造多个场、多个波形、一个或多个时空单元或神经刺激的时间模式中的一个或多个;以及模式优化器,其被配置为使用一个或多个神经元网络模型中的至少一个神经元网络模型来近似地优化多个场、多个波形、一个或多个时空单元或神经刺激的时空模式中的一个或多个。

在示例2中,示例1的主题可以可选地被配置为包括第一编程器,其被配置为经由通信链路对神经刺激器进行编程,并且包括编程输出电路以将多个刺激参数发送至神经刺激器,所述编程控制电路被耦合至编程输出电路和用户界面。用户界面包括显示屏幕、用户输入设备以及被耦合至显示屏幕和用户输入设备的界面控制电路。

在示例3中,示例2的主题可以可选地被配置为使得第一编程器还包括存储设备和模式发生器,并且其中界面控制电路包括模式发生器。

在示例4中,示例2的主题可以可选地被配置为还包括第二编程器,其被配置为被通信地耦合至第一编程器。第二个编程器包括存储设备和模式发生器。第一编程器的用户界面被配置为允许对由模式发生器生成的神经刺激的时空模式的用户修改。

在示例5中,示例1-4中的任何一个或示例1-4的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型被配置为允许模式发生器在没有患者存在的情况下生成初始版本的神经刺激的时空模式。

在示例6中,示例2-5中的任何一个或示例2-5的任何组合的主题可以可选地被配置为使得用户界面被配置为允许测试神经刺激的时空模式并且允许仅保存所测试的神经刺激的时空模式,以供编程控制电路用于生成多个刺激参数。

在示例7中,示例6的主题可以可选地被配置为使得用户界面被配置为允许使用表示神经刺激的时空模式的测试模式来测试神经刺激的时空模式。

在示例8中,示例7的主题可以可选地被配置为使得模式发生器被配置为生成测试模式,其为包括神经刺激的时空模式的所有一个或多个时空单元的神经刺激的时空模式的缩短版本。

在示例9中,示例7的主题可以可选地被配置为使得模式发生器被配置为生成包括各种时空单元的测试模式,以用于确定在神经刺激的时空模式中使用的一个或多个时空单元。

在示例10中,示例1-9中的任何一个或示例1-9的任何组合的主题可以可选地被配置为使得模式发生器被配置为在指定一个或多个时空单元之后自动产生用于生成神经刺激的时空模式的参数。

在示例11中,示例10的主题可以可选地被配置为使得模式发生器被配置为自动地产生包括控制每个时空单元的持续时间的参数的参数。

在示例12中,示例10的主题可以可选地被配置为使得模式发生器被配置为自动地产生包括控制神经刺激的时空模式中的时空单元的顺序的参数(当一个或多个时空单元包括多个时空单元时)的参数。

在示例13中,示例1-12中的任何一个或示例1-12的任何组合的主题可以可选地被配置为使得界面控制电路被配置为允许对一个或多个时空单元的用户指定。

在示例14中,示例1-13中的任何一个或示例1-13的任何组合的主题可以可选地被配置为使得一个或多个时空单元包括多个时空单元,并且模式发生器被配置为生成包括要在时间上同时地或顺序地布置的多个时空单元中的两个或更多个时空单元的神经刺激的时空模式。

在示例15中,示例14的主题可以可选地被配置为使得模式发生器被配置为,在检查指定的兼容性规则时允许多个时空单元中的两个或更多个时空单元在时间上同时被布置。

(B.神经元网络模型)

在示例16中,示例1-15中的任何一个或示例1-15的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型各自针对神经调制的一个或多个适应症中的一个适应症而被构造。

在示例17中,示例1-16中的任何一个或示例1-16的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括至少一个多节点模型,所述多节点模型包括各自表示患者的神经系统的功能性子单元的多个节点。

在示例18中,示例17的主题可以可选地被配置为使得多节点模型包括复制节点,其被互连以形成针对复制节点中的每个节点的感受场和周围场的重叠重复模式。

在示例19中,示例18的主题可以可选地被配置为使得复制节点之间的互连具有可调节的强度。

在示例20中,示例18和19的中任何一个或示例18和19的任何组合的主题可以可选地被配置为使得复制节点之间的互连具有可调节的时间延迟。

在示例21中,示例17-20中的任何一个或示例17-20的任何组合的主题可以可选地被配置为使得多节点模型还包括加权映射,所述加权映射向多个节点中的每个节点分配加权因子以用于评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在治疗神经调制的一个或多个适应症上的治疗效果。

在示例22中,示例17-21中的任何一个或示例17-21的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括各自表示患者神经系统的不同功能性或结构性单元的多个多节点模型。

在示例23中,示例17-22中的任何一个或示例17-22的任何组合的主题可以可选地被配置为使得多节点模型包括相互抑制性节点。

在示例24中,示例17-22中的任何一个或示例17-22的任何组合的主题可以可选地被配置为使得多节点模型包括节点,其各自包括具有针对递送神经刺激脉冲的脉冲处的频率范围为最低的触发率的神经元。

在示例25中,示例17-24中的任何一个或示例17-24的任何组合的主题可以可选地被配置为使得多节点模型包括输入,以用于神经刺激脉冲以空间上特定的方式被递送至多个节点中的指定节点集合。

在示例26中,示例17-25中的任何一个或示例17-25的任何组合的主题可以可选地被配置为使得多节点模型包括多个节点中的相邻节点,其连接通过测量由于一个节点的激活而造成的感知阈值以及由相邻节点的激活所引起的该感知阈值的百分比变化来调节。

在示例27中,示例17-26中的任何一个或示例17-26的任何组合的主题可以可选地被配置为使得多节点模型包括一个或多个节点,其各自对应于多个电极中的电极。

在示例28中,示例17-26中的任何一个或示例17-26的任何组合的主题可以可选地被配置为使得多节点模型包括各自对应于感觉异常位点的一个或多个节点,以及作为对疼痛的替代的输出。

在示例29中,示例1-28中的任何一个或示例1-28的任何组合的主题可以可选地被配置为使得使用实验数据来验证一个或多个神经元网络模型。

在示例30中,示例1-29中的任何一个或示例1-29的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型各自包括每个与选自多个电极的电极相关联的输入,以及表示神经调制的一个或多个适应症中的适应症的输出。

(C.累积效果的神经刺激)

在示例31中,示例1-30中的任何一个或示例1-30的任何组合的主题可以可选地被配置为使得神经刺激的时空模式包括一系列子模式,所述一系列子模式被构造为治疗神经调制的一个或多个适应症中的适应症。

在示例32中,示例31的主题可以可选地被配置为使得模式发生器被配置为生成一系列子模式中的每个子模式,使得根据神经刺激的时空模式递送的神经刺激脉冲中的脉冲在不引起一个或多个指定的副作用的情况下在治疗适应症上具有累积效果。

在示例33中,示例32的主题可以可选地被配置为使得模式发生器被配置为生成一系列子模式中的每个子模式,使得根据神经刺激的时空模式递送的神经刺激脉冲中的脉冲在不引起感觉异常的情况下或在不引起无法忍受的感觉异常水平的情况下在治疗疼痛上具有累积效果。

在示例34中,示例31-33中的任何一个或示例31-33的任何组合的主题可以可选地被配置为使得模式优化器被配置为单独地使用至少一个神经元网络模型来优化一系列子模式中的每个子模式。

在示例35中,示例31-34中的任何一个或示例31-34的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括至少一个模型,所述至少一个模型包括对应于在一系列子模式中指定的多个场中的一个或多个场的输入,以及各自表示在治疗神经调制的一个或多个适应症中的适应症的效果或副作用的输出。

在示例36中,示例31-35中的任何一个或示例31-35的任何组合的主题可以可选地被配置为使得该一系列子模式包括被构造为在治疗神经调制的一个或多个适应症中的该适应症上具有治疗效果的第一子模式,以及附加的子模式。

在示例37中,示例36的主题可以可选地被配置为使得附加的子模式被构造为增强治疗效果。

在示例38中,示例36和37的中任何一个或示例36和37的任何组合的主题可以可选地被配置为使得第一子模式与副作用相关联,并且附加的子模式被构造为减轻该副作用。

在示例39中,示例36-38中的任何一个或示例36-38的任何组合的主题可以可选地被配置为使得第一子模式和第二子模式包括选自多个场的相同场。

在示例40中,示例36-38中的任何一个或示例36-38的任何组合的主题可以可选地被配置为使得第一子模式和第二子模式包括选自多个场的不同场。

(D.神经刺激的稳健配置)

在示例41中,示例1-30中的任何一个或示例1-30的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括至少一个稳健模型,其被配置为允许评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在指定范围的条件下针对一个或多个治疗效果中的至少一个治疗效果。

在示例42中,示例41的主题可以可选地被配置为使得模式优化器被配置为使用至少一个稳健模型在指定范围的条件下针对至少一个治疗效果近似地优化神经刺激的时空模式。

在示例43中,示例41的主题可以可选地被配置为使得模式优化器被配置为使用至少一个稳健模型在指定范围的条件内的最大范围的条件下针对至少一个治疗效果近似地优化神经刺激的时空模式。

在示例44中,示例41-43中的任何一个或示例41-43的任何组合的主题可以可选地被配置为使得模式优化器被配置为使用至少一个稳健模型近似地优化针对神经刺激的时空模式而选择的一个或多个场,以最小化由于一个或多个场中的每个相对于患者中的参考结构的位置上的变化造成的至少一个治疗效果上的变化。

在示例45中,示例44的主题可以可选地被配置为使得参考结构包括中线、脊椎水平、大血管、或者编号的或生理地识别的根、或者给定另一结构性或功能性界标的相对位置。

在示例46中,示例41-45中的任何一个或示例41-45的任何组合的主题可以可选地被配置为使得模式优化器被配置为使用至少一个稳健模型近似地优化神经刺激的时空模式,以最小化由于从患者感测到的生理信号上的变化或者从该生理信号计算出的信号上的变化造成的至少一个治疗效果上的变化。

在示例47中,示例46的主题可以可选地被配置为使得生理信号上的改变包括诱发复合动作电位(ECAP)上的改变、特定神经元或特定神经元组的触发上的改变、或生理信号的峰值频率上的变化。

在示例48中,示例41-47中的任何一个或示例41-47的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括至少一个模型,其被配置为允许评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形使用机器学习和决策的一个或多个治疗效果。

在示例49中,示例48的主题可以可选地被配置为使得一个或多个神经元网络模型包括至少一个模型,其被配置为允许对神经刺激的时空模式的模糊优化、多目标优化或稳健优化。

(E.多步骤优化)

在示例50中,示例1-30中的任何一个或任何组合的主题可以可选地被配置为使得模式优化器被配置为在多个优化步骤中使用至少一个神经元网络模型近似地优化神经刺激的时空模式。

在示例51中,示例50的主题可以可选地被配置为使得神经刺激的时空模式指定被分组为一个或多个时空单元中的至少第一时空单元和第二时空单元的神经刺激脉冲的序列,并且模式优化器被配置为在多个优化步骤中的第一优化步骤中近似地优化第一时空单元并且在多个优化步骤在的第二优化步骤中近似地优化第二时空单元。

在示例52中,示例51的主题可以可选地被配置为使得模式优化器被配置为在第二优化步骤中相对于第一时空单元近似地优化第二时空单元。

在示例53中,示例50和51的中任何一个或示例50和51的任何组合的主题可以可选地被配置为使得模式优化器被配置为针对一个或多个治疗效果中的共同治疗效果近似地优化第一时空单元和第二时空单元。

(F.感觉异常引导的场选择)

在示例54中,示例1-53中的任何一个或示例1-53的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括疼痛模型,其被配置为允许使用感觉异常作为引导来优化神经刺激的时空模式。

在示例55中,示例54的主题可以可选地被配置为使得模式优化器被配置为使用疼痛模型以及一个或多个已知的感觉异常位点来近似地优化神经刺激的时空模式,所述一个或多个已知的感觉异常位点各自为针对引起感觉异常而识别出的多个场中的场集合。

在示例56中,示例55的主题可以可选地被配置为使得模式优化器被配置为使用疼痛模型和至少两个已知的感觉异常位点来近似地优化神经刺激的时空模式。

在示例57中,示例55和56的中任何一个或示例55和56的任何组合的主题可以可选地被配置为使得模式优化器被配置为通过使用一个或多个已知的感觉异常位点作为选自多个场的场,并且近似地优化与所选场中的每个相关联的波形,来近似地优化神经刺激的时空模式。

在示例58中,示例55-57中的任何一个或示例55-57的任何组合的主题可以可选地被配置为使得模式优化器被配置为通过使用围绕一个或多个已知的感觉异常位点的一个或多个区域作为选自多个场的场,并且近似地优化与所选场中的每个相关联的波形,来近似地优化神经刺激的时空模式。

在示例59中,示例58的主题可以可选地被配置为使得模式优化器被配置为优化与所选场中的每个相关联的波形的一个或多个脉冲频率。

在示例60中,示例58的主题可以可选地被配置为使得模式优化器被配置为通过使用一个或多个已知的感觉异常位点以及围绕一个或多个已知的感觉异常位点的一个或多个区域作为选自多个场的场,并且近似地优化与所选场中的每个相关联的波形。来近似地优化神经刺激的时空模式。

在示例61中,示例54-60中的任何一个或示例54-60的任何组合的主题可以可选地被配置为使得使用临床前数据来验证疼痛模型。

在示例62中,示例54-61中的任何一个或示例54-61的任何组合的主题可以可选地被配置为使得使用来自患者群体的临床数据收集(data collection)来验证疼痛模型。

在示例63中,示例54-62中的任何一个或示例54-62的任何组合的主题可以可选地被配置为使用从个体患者收集到的数据来验证疼痛模型。

在示例64中,示例54-63中的任何一个或示例54-63的任何组合的主题可以可选地被配置为使得模式优化器被配置为使用选自多个场的背根场作为神经刺激的时空模式中指定的一个或多个场来近似地优化神经刺激的时空模式,所述背根场各自指定要放置在一个或多个背根中的选自多个电极的一个或多个电极。

在示例65中,示例54-64中的任何一个或示例54-60的任何组合的主题可以可选地被配置为使得模式优化器被配置为使用选自多个场的背柱场作为神经刺激的时空模式中指定的一个或多个场来近似地优化神经刺激的时空模式。背柱场各自指定要放置在一个或多个背柱中的选自多个电极的一个或多个电极。

在示例66中,示例54-65中的任何一个或示例54-60的任何组合的主题可以可选地被配置为使得模式优化器被配置为使用选自多个波形的多个不同波形作为神经刺激的时空模式中指定的一个或多个波形来近似地优化神经刺激的时空模式。

在示例67中,示例66的主题可以可选地被配置为使得模式优化器被配置为通过包括一个或多个时空单元的不同的时空单元来近似地优化神经刺激的时空模式,不同的时空单元靶向患者神经系统的不同区域,以用于在针对不同区域中的每个区域单独指定的时间处递送神经刺激脉冲的脉冲。

在示例68中,示例57-67中的任何一个或任何组合的主题可以可选地被配置为使得模式优化器被配置为通过使用疼痛模型以及一个或多个已知的感觉异常位点的区域的解剖以识别选自多个场的附加的一个或多个场,并且近似地优化与所选择的一个或多个场中的每个相关联的波形,来近似地优化神经刺激的时空模式。

在示例69中,示例57-68中的任何一个或任何组合的主题可以可选地被配置为使得用户界面被配置为允许对由模式优化器选择的场的用户修改。

(G.解剖引导的场选择)

在示例70中,示例1-53中的任何一个或示例1-53的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括疼痛模型,其被配置为允许使用一个或多个疼痛位置以及为刺激所已知来抑制疼痛的一个或多个目标区域作为引导,来优化神经刺激的时空模式。

在示例71中,示例1-53中的任何一个或示例1-53的任何组合的主题可以可选地被配置为使得模式优化器被配置为基于一个或多个疼痛位置以及一个或多个目标区域选择选自多个场的一个或多个场以在神经刺激的时空模式中使用。

在示例72中,示例70和71的中任何一个或示例70和71的任何组合的主题可以可选地被配置为使得模式优化器被配置为基于一个或多个疼痛位置以及一个或多个目标区域识别一个或多个场以在神经刺激的时空模式中使用,并且如果所识别出的一个或多个场尚未被包括在多个场中,则将所识别出的一个或多个场添加至多个场。

在示例73中,示例70-72中的任何一个或示例70-72的任何组合的主题可以可选地被配置为使得模式优化器包括将一个或多个疼痛位置与一个或多个目标区域相关联的查询表,并且使用疼痛位点和查询表来识别一个或多个目标区域。

在示例74中,示例70-73中的任何一个或示例70-73的任何组合的主题可以可选地被配置为使得疼痛模型还被配置为允许使用疼痛诊断作为输入来优化神经刺激的时空模式。

在示例75中,示例71-74中的任何一个或示例71-74的任何组合的主题可以可选地被配置为使得模式优化器被配置为基于在神经刺激的时空模式中指定的一个或多个场而生成用于将多个电极放置在患者体内的引导。

(H.时空滤波以降低空间灵敏度)

在示例76中,示例1-53中的任何一个或示例1-53的任何组合的主题可以可选地被配置为使得一个或多个神经元网络模型包括感兴趣区域(ROI)模型,其表示包括神经元目标的指定ROI并且被划分为多个子区域。ROI模型包括表示神经元目标的目标单元以及各自表示多个子区域的多个周围单元。

在示例77中,示例76的主题可以可选地被配置为使得ROI模型被配置为表示滤波器,其具有用于接收在多个子区域中的一个或多个子区域中接收到的神经刺激脉冲的脉冲的输入,以及表示如由神经元目标接收到的脉冲的输出。

在示例78中,示例76和77的中任何一个或示例76和77的任何组合的主题可以可选地被配置为使得神经元目标包括背根、背柱、突触前背角、突触后背角或背外侧索中的一个或多个神经元。

在示例79中,示例76-78中的任何一个或示例76-78的任何组合的主题可以可选地被配置为使得ROI模型被配置为允许评估选自多个场的一个或多个场结合选自多个波形的一个或多个波形在治疗疼痛上的一个或多个治疗效果。

在示例80中,示例76-79中的任何一个或示例76-79的任何组合的主题可以可选地被配置为使得模式优化器被配置为使用ROI模型优化神经刺激的时空模式,并且神经刺激的时空模式中的一个或多个场包括多个ROI场,所述ROI场各自指定ROI内所选择的一个或多个电极的空间分布。

在示例81中,示例80的主题可以可选地被配置为使得ROI场各自对应于多个子区域中的一个或多个子区域。

在示例82中,示例81的主题可以可选地被配置为使得神经刺激的时空模式的一个或多个时空单元包括多个ROI时空单元,其各自包括多个ROI场中的场结合选自多个波形的一个或多个ROI波形,模式编辑器被配置为创建多个ROI场、一个或多个ROI波形、多个ROI时空单元以及神经刺激的时空模式,并且模式优化器被配置为评估神经刺激的时空模式。

在示例83中,示例82的主题可以可选地被配置为使得模式编辑器被配置为使用伪随机发生器、噪声模拟过程、泊松过程、随机模式、优化模式或一个或多个启发式规则来确定神经刺激的时空模式中的ROI时空单元的顺序。

在示例84中,示例82的主题可以可选地被配置为使得模式编辑器被配置为确定神经刺激的时空模式中的ROI时空单元的顺序,以最大化时空距离测量值。

在示例85中,示例82-84中的任何一个或示例82-84的任何组合的主题可以可选地被配置为使得模式编辑器被配置为允许用户调节多个ROI场、一个或多个ROI波形、多个ROI时空单元以及神经刺激的时空模式。

在示例86中,示例82-85中的任何一个或示例82-85的任何组合的主题可以可选地被配置为使得模式编辑器被配置为创建并调节神经刺激脉冲中的每个脉冲的脉冲幅度、脉冲宽度或脉冲形状中的一个或多个。

在示例87中,示例76-86中的任何一个或示例76-86的任何组合的主题可以可选地被配置为使得模式编辑器被配置为基于识别神经元目标的诊断来指定ROI。

在示例88中,示例87的主题可以可选地被配置为使得模式编辑器被配置为基于识别神经元目标和多个电极的位置的诊断来指定ROI。

在示例89中,示例87和88的中任何一个或示例87和88的任何组合的主题可以可选地被配置为使得模式编辑器被配置为允许用户针对ROI的多个子区域指定多个子区域。

在示例90中,示例87-90中的任何一个或示例87-90的任何组合的主题可以可选地被配置为使得模式编辑器被配置为指定多个空间上不同的ROI。

应该理解的是,以上详细描述旨在是说明性的而非限制性的。在阅读和理解以上描述之后,其他实施例对于本领域技术人员将是显而易见的。因此,本发明的范围应该参照所附权利要求以及这些权利要求的等同物的全部范围来确定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号