首页> 中国专利> 一种离子液体凝胶基全凝胶超级电容器的制备方法

一种离子液体凝胶基全凝胶超级电容器的制备方法

摘要

本发明涉及一种离子液体凝胶基全凝胶超级电容器的制备方法,包括以下步骤:将碳纳米管与离子液体进行混合研磨,再依次混入PVDF‑HFP和乙炔黑,高温搅拌后蒸发溶剂,制备得到凝胶电极;取单体、交联剂和高电导率离子液体在室温下进行混合,然后加入光引发剂,在紫外光下成胶,得到离子凝胶电解质;通过涂敷方式将凝胶电极均匀涂在离子凝胶电解质上下表面,并高温烘干,得到一体化的凝胶电极‑凝胶电解质‑凝胶电极三明治结构的全凝胶材料,采用铝箔作为集流体与外部电路连接,即制得产品。与现有技术相比,本发明电极‑电解质界面的电子‑离子传导能力增强,促进电极‑电解质界面的融合,减小界面电阻,耐受温度更广。

著录项

  • 公开/公告号CN108630461A

    专利类型发明专利

  • 公开/公告日2018-10-09

    原文格式PDF

  • 申请/专利权人 同济大学;

    申请/专利号CN201810378226.3

  • 发明设计人 尹成尧;王启刚;周杰;

    申请日2018-04-25

  • 分类号

  • 代理机构上海科盛知识产权代理有限公司;

  • 代理人杨元焱

  • 地址 200092 上海市杨浦区四平路1239号

  • 入库时间 2023-06-19 06:44:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-07

    授权

    授权

  • 2018-11-02

    实质审查的生效 IPC(主分类):H01G11/84 申请日:20180425

    实质审查的生效

  • 2018-10-09

    公开

    公开

说明书

技术领域

本发明属于高分子凝胶材料制备及新能源材料领域,具体涉及一种离子液体凝胶基全凝胶超级电容器的制备方法。

背景技术

凝胶按分散介质的不同,分为水凝胶、气凝胶、有机溶剂凝胶等。离子液体是一种新型绿色溶剂,因其几乎无饱和蒸汽压而具有不挥发性,安全不可燃,高电导率,优异的热稳定性而在能源领域(锂离子电池,超级电容器)得到广泛应用。

2003年,Aida等人(Science 2003,300,2072-2218)将单臂碳纳米管与离子液体进行复合制成了由物理作用交联的凝胶,因为碳纳米管又名“巴基管”(英文名Bucky Tube),故首次将此凝胶命名为巴基胶(Bucky Gel)。研究人员发现单臂碳纳米管能够很好地分散在咪唑类离子液体中,当时只是对机理进行初步的推测,将机理解释为碳纳米管表面的π电子与咪唑环阳离子之间的π-阳离子相互作用。而学者最新的研究又表明碳纳米管与咪唑类离子液体之间存在多种相互作用,包括范德华力(分子间的作用力)、π电子-阳离子相互作用以及静电相互作用(ACS Nano 2008,2,2540-2546)。2005年,研究者又开发出通过热熔法制备的Bucky胶基凝胶驱动器(Angew.Chem.Int.Ed.2005,44,2410-2413),进一步拓展了其在能源领域中的应用。

离子液体固化形成离子液体凝胶有多种方法,其中最为普遍的即为原位聚合成胶的方法,即离子液体单纯作为分散介质,聚合成胶过程中被单体、交联剂形成的三维网络结构固定。离子液体凝胶相对同组分水凝胶而言具有很多明显有点,其能够在开放的环境中工作,而不会像水凝胶一样蒸发变干而性能大幅衰减,固化后相比纯离子液体更加安全稳定,高离子电导率使其在能源领域有很好的应用前景。

天然多糖作为增粘剂用来改善凝胶性能已得到了广泛的研究,纤维素、壳聚糖、黄原胶等对于改善凝胶力学性能已得到一定的研究,武汉大学张俐娜教授团队开发出一类碱/尿素绿色新溶剂体系,进而制备出了一系列纤维素/甲壳素/壳聚糖高强度水凝胶(Chinese Journal of Polymer Science,2017,35(10):1165-1180)。

超级电容器作为一种储能装置,拥有可以快速充放电的突出优势,但超级电容器存在储能低的短板,很大程度上限制了其应用。长久以来,科研人员试图从电极和电解液两个角度分别寻找既能保持快速充放电优势又能提高储电量的方法,而且随着近年来智能穿戴设备的发展,对于储能器件的柔性有很高的要求,但仍未获得实质性突破。

发明内容

本发明的目的就是为了克服传统水系凝胶电解质的应用缺陷而提供一种离子液体凝胶基全凝胶超级电容器的制备方法。

本发明的目的通过以下技术方案实现:

一种离子液体凝胶基全凝胶超级电容器的制备方法,包括以下步骤:

(1)制备凝胶电极:将碳纳米管与离子液体进行混合研磨,再依次混入PVDF-HFP和乙炔黑,高温搅拌后蒸发溶剂,制备得到凝胶电极;

(2)制备离子凝胶电解质:取单体、交联剂和高电导率离子液体在室温下进行混合,然后加入光引发剂,在紫外光下成胶,得到离子凝胶电解质;

(3)全凝胶材料的制备:通过涂敷方式将步骤(1)制备的凝胶电极均匀涂在步骤(2)制备的离子凝胶电解质上下表面,并高温烘干,得到一体化的凝胶电极-凝胶电解质-凝胶电极三明治结构的全凝胶材料,采用铝箔作为集流体与外部电路连接,即制得产品。

进一步地,步骤(1)所述的碳纳米管为单臂碳纳米管,所述的离子液体为咪唑类离子液体,选自1-丁基-3-甲基咪唑四氟硼酸盐或1-乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐的一种。

进一步地,步骤(1)所述PVDF-HFP为PVDF-HFP经溶剂4-甲基-2-戊酮(MP)在80℃下溶解的溶液。

进一步地,步骤(1)混合物在80℃条件下搅拌5h。

进一步地,步骤(2)所述的单体为N,N-二甲基丙烯酰胺,占总体质量的30%,所述的交联剂为N,N-亚甲基双丙烯酰胺或聚乙二醇双丙烯酸酯,占总体质量的0.1%,所述的高电导率离子液体为1-乙基-3-甲基咪唑四氟硼酸盐,占总体质量的60%。

进一步地,步骤(2)所述的光引发剂选自2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮或α-二乙氧基苯乙酮,光引发剂的添加量为反应原料总重量的0.02-0.08%。

进一步地,步骤(2)在紫外光下成胶时间为15~20min。

进一步地,步骤(2)中可加入0.3%~5%的黄原胶进行增强,加入黄原胶天然高分子多糖后能够进一步有效改善凝胶电解质的力学性能,因而黄原胶改性后对于改进离子液体凝胶的性能具有重要作用。

本发明引入了由碳纳米管与离子液体组装形成的Bucky胶作为凝胶电极,电解质部分采用力学性能优异、高电导率的离子液体凝胶,并将二者一体化的组装了全凝胶超级电容器,电极部分巧妙的借用了碳纳米管与离子液体的相互作用,在其基础上制备出性能优异的凝胶电极。电解质部分,利用高离子电导率的离子液体作为溶剂,快速原位光引发聚合交联成胶,调节不同的原料配比,得到力学性能最优的离子液体凝胶,加入黄原胶天然高分子多糖后还能够进一步有效改善凝胶电解质的力学性能,因而对于改进离子液体凝胶的性能具有重要作用。

本发明制备的全凝胶超级电容器可适应很宽的工作温度窗口,电容器不仅耐高温,而且在高温环境下器件的电阻会减小,电容会提升,而在低温下该全凝胶型超级电容器也能保持一定的电容,在-40℃电容衰减不到1/2。

本发明采用室温离子液体,制备条件温和,仅利用研钵研棒对反应物研磨数分钟即可完成单臂碳纳米管在绿色条件下的剥离,实验条件简单易操作,安全无毒、柔韧、可循环再利用以及易回收处理的特点,在电池、超级电容器的安全生产与应用、环境友好方面具有重要意义。

与现有技术相比,本发明具有以下有益效果:

1、电极-电解质界面的电子-离子传导能力增强。本发明通过将凝胶电极直接刮涂在凝胶电解质的表面,并在高温下使凝胶电极中的溶剂蒸发,而凝胶电极与电解质之间则可更加紧密地接触,从而增强了电极-电解质界面的电子-离子传导能力。

2、更好地促进电极-电解质界面的融合,减小界面电阻。本发明通过一体化的制备过程,全凝胶超级电容器的电极层和电解质层贴合紧密,相比于将电极材料涂在集流体上,然后通过物理粘附的方式与固态电解质材料组装在一起,直接将凝胶电极材料原位自组装在电解质材料表面的方式可以更好地促进电极-电解质界面的融合,从而在一定程度上减小界面电阻。

3、全凝胶型超级电容器可耐受水系电解液或是水凝胶电解质所不能耐受的温度,可以在-40℃~100℃环境下工作,而且性能能够保持相对稳定。由于全凝胶超级电容器各组分优异的热稳定性,当将测试温度窗口调整到低温,当温度降至-40℃时,全凝胶超级电容器的电容只衰减了不到1/2。证明在低温下,该材料依然具备一定的性能,而且可以耐受120℃高温,且高温状态下电阻减小,电容增大,升高到100℃时,电容增加到室温下的一倍,与水系或者水凝胶电解质超级电容器相比具有明显优势。

附图说明

图1为实施例Bucky胶基凝胶电极微观结构表征扫描电子显微镜图;

图2为实施例Bucky胶基凝胶电极宏观凝胶态3D打印图案展示;

图3为实施例一体化全凝胶超级电容器横截面扫描电子显微镜图;

图4为实施例全凝胶型超级电容器在室温下的电化学性能测试结果图;

图5为实施例全凝胶型超级电容器在低温环境下的电化学性能测试结果图。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。

实施例

一种离子液体凝胶基全凝胶超级电容器的制备方法,包括以下步骤:

1、凝胶电极的制备:首先将40mg碳纳米管与离子液体进行混合,放在研钵上进行研磨,20min后用挂勺取下,放入5ml玻璃瓶中,然后继续向玻璃瓶中加入2.5ml已用溶剂4-甲基-2-戊酮,在80℃下溶解好的PVDF-HFP高温溶液,最后混入10mg乙炔黑,在80℃条件下继续进行搅拌,时间4h,形成高温下的粘稠溶液,粘稠溶液降温后会形成胶态,为弱的物理交联的凝胶。得到的凝胶宏观拍摄并且将其得到凝胶冷冻干燥后拍摄扫描电子显微镜,如图1,2所示。

2、取质量分数为5%~20%的单体N,N-二甲基丙烯酰胺(DMAA),占单体质量分数为0.5%~1.5%的交联剂N,N'-亚甲基双丙烯酰胺(MBAA),与室温下高电导率离子液体1-乙基-3-甲基咪唑四氟硼酸盐[Emim]BF4在室温下进行混合,然后加入光引发剂2,2-二乙氧基苯乙酮DEAP,在紫外光下15min~20min成胶。将此胶命名为IGE。在另一个体系中其他组分不变,其他条件同上步骤3,加入黄原胶进行增强,同样进行15min紫外光固化成胶,将此胶命名为X-IGE。

3、通过涂敷方式将步骤(1)制备的凝胶电极均匀涂在步骤(2)制备的离子凝胶电解质上下表面,并高温烘干,得到一体化的凝胶电极-凝胶电解质-凝胶电极三明治结构的全凝胶材料,采用铝箔作为集流体与外部电路连接,即制得产品,对一体化全凝胶超级电容器拍摄扫描电子显微镜图,如图3所示。

将制备得到的超级电容器进行低温和高温测试,电化学性能如图4、5所示。在低温下,本材料依然具备一定性能,与水系或者水凝胶电解质超级电容器相比具有明显优势。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号